PACIFIC **DSCIENCES®**

Technical Overview: Multiplexed Library Preparation for Full-Viral Genome Sequencing Using HiFiViral SARS-CoV-2 Kit

Sequel II and IIe Systems ICS v10.1 / SMRT Link v10.2

For Research Use Only. Not for use in diagnostic procedures. © Copyright 2021 by Pacific Biosciences of California, Inc. All rights reserved.

Multiplexed Library Preparation for Full-Viral Genome Sequencing Using HiFiViral SARS-CoV-2 Kit

- 1. HiFiViral SARS-CoV-2 Kit Workflow Overview
- 2. Multiplexed Library Preparation Using Molecular Inversion Probe-Based Enrichment with the HiFiViral SARS-CoV-2 Kit
- **3.** Multiplexed SARS-CoV-2 Library Sequencing Workflow Recommendations
- 4. Multiplexed SARS-CoV-2 Data Analysis Recommendations
- 5. Multiplexed SARS-CoV-2 Library Example Performance Data
- 6. Technical Documentation & Applications Support Resources
- APPENDIX 1: RNA Isolation Kit Options for Full-Viral Genome Sequencing of SARS-CoV-2

APPENDIX 2: Guidance on Workflow Automation For Multiplexed Library SARS-CoV-2 Library Preparation PACBIO*

SARS-CoV-2 FULL-VIRAL GENOME SEQUENCING: HOW TO GET STARTED

Summary overview of application-specific sample preparation and data analysis workflow recommendations

Technical documentation containing sample library construction and sequencing preparation protocol details

Using HiFiViral SARS-CoV-2 Kit (102-205-300)

Technical Overview presentations describe sample preparation details for constructing HiFi libraries for specific applications. Example sequencing performance data for a given application are also summarized.

* For Research Use Only. Not for use in diagnostic procedures.

SMRT Link HiFiViral SARS-CoV-2 analysis

application

ATTEN

ארק כל אכן כל אכי כי אינא 😥 Pac**bio**

HIFIVIRAL SARS-COV-2 KIT USES MOLECULAR INVERSION PROBES FOR EFFICIENT ENRICHMENT OF VIRAL RNA SEQUENCES FOR ANALYSIS

SARS-CoV-2 enrichment k

121212121212121

G....

Robust performance

Easier workflo

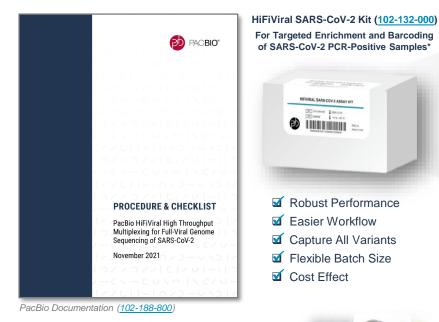
Capture variant

Flexible batch siz

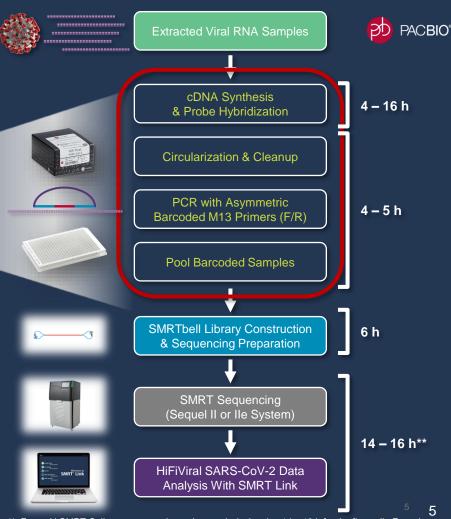
Better Performance with Molecular Inversion Probes (MIPs)

- Differentiated enrichment technology
- Robust genome coverage across a range of Ct-values
- Probe design resilient to novel variants
- Capture mutations of all types
- Detect multiple strains in one sample

Easier Workflow and Faster Turnaround Times


- Easier workflow compared to targeted PCR amplicons
- All ready-to-use reagents in one kit
- Color change indicator confirms correct reagent was added
- Addition-only workflow can be automated
- Automated sequencing and analysis runs overnight

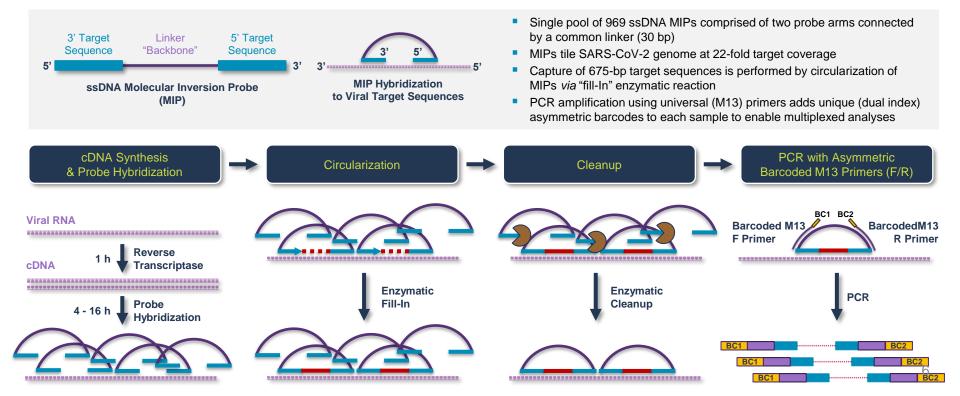
Flexible Scaling


- 384 reactions per kit
- Scalable batching: 24 384 samples per run

Quickly and efficiently scale genomic surveillance by sequencing with an accurate and robust kit solution to capture all variants

END-TO-END PACBIO PROTOCOL FOR FULL-VIRAL GENOME SEQUENCING USING HiFiViral SARS-CoV-2 KIT

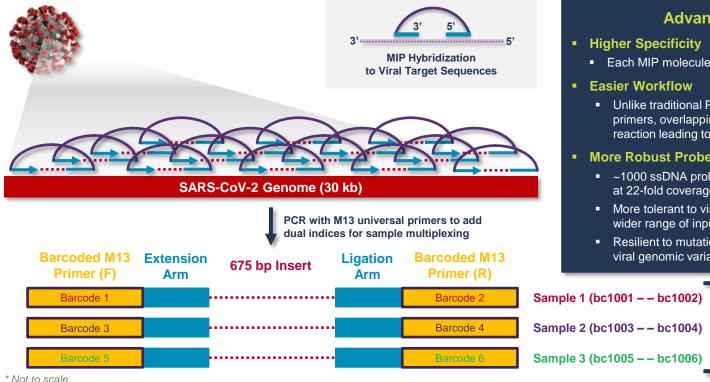
- Full workflow can be completed from sample to answer in as short as ~28 - 42 h (1 - 2.5 h hands-on time)
- Multiplex 24 384 samples per SMRT Cell 8M and load up to 8 SMRT Cells per Sequel IIe System to run up to 3,072 samples per week
- HiFiViral SARS-CoV-2 Kit demonstrated use cases include RNA-extracted samples such as nasopharyngeal or saliva swabs from human SARS-CoV-2 PCR+ cohort samples.



** For multi-SMRT Cell runs, sequencing + data analysis time is ~14 – 16 h for the first cell. For subsequent SMRT Cells, sequencing + data analysis time is ~9 – 10 h per cell

אמסאר כן כל אכן כל איכן כל איכ איכן כל איכ איכ

HiFiViral SARS-CoV-2 KIT USES *MOLECULAR INVERSION PROBE* TECHNOLOGY FOR EFFICIENT VIRAL GENOME ENRICHMENT


Overview of MIP-Based Viral Enrichment Enzymatic Reaction Steps

PACBIO*

HiFiViral SARS-CoV-2 KIT USES MOLECULAR INVERSION PROBE **TECHNOLOGY FOR EFFICIENT VIRAL GENOME ENRICHMENT (CONT.)**

Dense MIP-Based Tiling of Target Sequences Enables Robust Coverage

Advantages of MIPs

- **Higher Specificity**
 - Each MIP molecule contains two probe arms
- **Easier Workflow**
 - Unlike traditional PCR-based targeting with overlapping primers, overlapping MIPs can be used in a single reaction leading to fewer plates and fewer touch points

More Robust Probe Design

- ~1000 ssDNA probes tile target SARS-CoV-2 genome at 22-fold coverage
- More tolerant to viral RNA sample degradation and a wider range of input RNA quantities
- Resilient to mutation-induced probe dropouts with new viral genomic variants

рас**вю**• расво-страна страна страна расво-

HIFIVIRAL SARS-COV-2 SEQUENCING REQUIRES FEWER READS FOR COMPLETE VIRAL GENOME COVERAGE

\bigcirc		nk			96-Plex o	f Twist C	ontrol Sa	mples		
HiFi Read PacBio HiFi reads achieve >99.9% accuracy		Wilman	HiFi Reads	100,000 - 10,000 - 1,000 -		•	Samples wi complete ger 100		verage* w	
TECHNOLOGY	# OF READS FOR COMPLETE COVERAGE	MINIMUM READ DEPTH	-	100 -	 >=95% >=90% >=70% <70% 					8
PacBio HiFi	1,000	4-fold								
Oxford Nanopore	10,000	20-fold			20	25	Comula Of	30		35
Illumina	1,000,000	10-fold					Sample Ct			
	i reads are more accurate				High Viral Copy Number Abund				Low Number /	Viral Co Abundar o

→ Fewer reads simplifies analysis

* Complete = ≥90% genome coverage

HiFiViral SARS-CoV-2 Kit Workflow Overview

ארק כל אכן כל אנגן 💋 рас**вю**

HIFIVIRAL SARS-COV-2 KIT LIBRARY PREPARATION PROCEDURE DESCRIPTION

 Procedure & Checklist – HiFiViral for SARS-CoV-2 Workflow (<u>102-188-800</u>) describes a viral enrichment and library preparation procedure for whole viral genome sequencing of multiplexed SARS-CoV-2 samples on the Sequel II and Ile Systems using HiFiViral SARS-CoV-2 Kit (<u>102-132-000</u>) and SMRTbell Template Prep Kit 2.0 (<u>100-938-900</u>)

HiFiViral SARS-CoV-2 Kit (<u>102-132-000</u>)

SMRTbell Express TPK 2.0 (100-938-900)

- This procedure utilizes molecular inversion probe (MIP)-based chemistry to enrich the SARS-CoV-2 genome with tiled probes that create highly-redundant overlapping amplicons, which are barcoded and pooled for construction into a single SMRTbell library for sequencing
- Viral enrichment uses an addition-only 4-step workflow with color-coded master mixes to simplify setup
- End-to-end workflow from cDNA synthesis through to SMRTbell library construction, sequencing & analysis can be completed in as short as 28 – 42 hours depending on desired hybridization time

PROCEDURE & CHECKLIST PacBio HiFIViral High Throughput Multiplexing for Full-Viral Genome Sequencing of SARS-CoV-2 November 2021

PacBio Documentation (102-188-800

RESEARCH FOCUS MICROBIOLOGY AND INFECTIOUS DISEASE PacBio COVID-19 Sequencing Tools and Resources

ליכן כדי כין כדי כין כדי כין כדי כין כדי כין כדי כי

HiFiViral SARS-CoV-2 KIT PRODUCT DESCRIPTION

HiFiViral SARS-CoV-2 Kit (102-132-000)

- Assay kit designed for targeted enrichment and barcoding of up to 384 human SARS-CoV-2-positive samples for full-length viral genomic sequencing on PacBio Sequel II or Ile Systems
- Kit contains two components: 1) SARS-CoV-2 Enrichment Kit; and 2) Barcoded M13 Primer Plate

SARS-CoV-2 Enrichment Kit

- The SARS-CoV-2 Enrichment Kit contains all reagents for enrichment using Molecular Inversion Probes (MIPs) of extracted RNA virus from cohort samples infected with the SARS-CoV-2 virus. This kit is to be used in conjunction with the Barcoded M13 Primer Plate.
- The results of the kit are enriched DNA fragments of ~800 bp in length that can be used to prepare a SMRTbell library for sequencing.
- Reagent quantities support preparation of 384 samples with flexible scaling down to batches of 24 samples.

Barcoded M13 Primer Plate*

- 1 premixed primer plate containing 384 barcoded M13 primer pairs for asymmetric (dual index) barcoding of multiplexed SMRTbell libraries
- Single-use per well with pierceable foil (can reseal between sample batches)

HIFIVIRAL SARS-COV-2 ASSAY KIT 107 00000 100-12-01 R01.24 HiFiViral SARS-CoV-2 Kit (102-132-000) HIFI Vira SARS-CoV-2 Enrichment Kit Barcoded M13 Primer Plate

PACBIO*

* Barcoded M13 Primer Plate (102-135-500) part may also be ordered separately for use with other multiplexed SMRT Sequencing applications.

PACBIO*

HiFiViral SARS-CoV-2 KIT COMPONENTS

KIT PRODUCT OR COMPONENT	KIT SUBCOMPONENT	PART NUMBER	QUANTITY	NO. OF REACTIONS SUPPORTED
HiFiViral SARS-CoV-2 Kit (NEW)				
		102-132-000		384
SARS-CoV-2 Enrichment Kit	1 Probe Mix		1 Tube	
	2 Fill-In Mix		1 Tube	
HER WINA HARS CAPA	3 Cleanup Mix		1 Tube	
	4 Reverse Transcriptase Mix		1 Tube	
	5 PCR Mix		3 Tubes	
Barcoded M13 Primer Plate*	Premixed Primer Plate		1 Plate	12

* Barcoded M13 Primer Plate (102-135-500) part may also be ordered separately for use with other multiplexed SMRT Sequencing applications.

HiFiViral SARS-CoV-2 KIT WORKFLOW OVERVIEW

Sample RNA Extraction

Viral Genome Enrichment with HiFiViral SARS-CoV-2 Kit

- Addition-only workflow features a visible color change with each reagent addition step to signal success
- All reactions performed on one sample plate
- MIP-based viral enrichment workflow times:
 - Overnight cDNA Synthesis (1 h) + Hybridization (16 h) with option to reduce hybridization time to 4 h for faster turnaround time. (A longer hybridization time boosts HiFi Data Yield for high-Ct samples
 - MIP Circularization, Cleanup, PCR and Pooling steps can be completed in ~4 5 h
- Amplify and asymmetrically barcode up to 384 SARS-CoV-2 samples (per SMRT Cell 8M) for multiplexing in a single library using PacBio-Barcoded M13 Primers

SMRTbell Library Construction & Sequencing Prep

- Library Prep: SMRTbell Express TPK 2.0; SMRTbell Enzyme Cleanup Kit 2.0
- Sequencing Prep: Sequencing Primer v5; Binding Kit 2.1; ProNex Bead Cleanup

Sequencing & Data Analysis

- Use 8-h movie collection time per SMRT Cell 8M
- Load up to 8 SMRT Cells per run to analyze up to 3,072 samples in 1 week
- Use SMRT Link HiFiViral SARS-CoV-2 analysis application for data analysis

Sample RNA Extraction

cDNA Synthesis

& Probe Hybridization

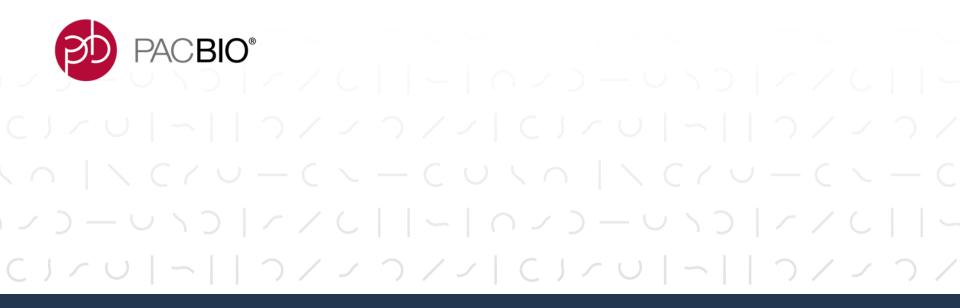
Circularization & Cleanup

PCR with Asymmetric

Barcoded M13 Primers (F/R)

Pool Barcoded Samples

SMRTbell Library Construction


& Sequencing Preparation

5

16 h

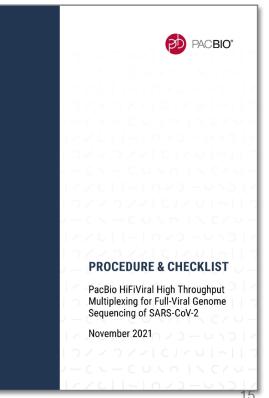
. ъ

– 16 h

Multiplexed Library Preparation Using Molecular Inversion Probe-Based Enrichment with the HiFiViral SARS-CoV-2 Kit

PROCEDURE & CHECKLIST – PACBIO HIFIVIRAL HIGH-THROUGHPUT MULTIPLEXING FOR FULL-VIRAL GENOME SEQUENCING OF SARS-COV-2

Procedure & Checklist <u>102-188-800</u> describes a viral enrichment and library preparation procedure for whole viral genome sequencing of multiplexed SARS-CoV-2 samples on the Sequel II and IIe Systems using HiFiViral SARS-CoV-2 Kit (102-132-000) and SMRTbell Template Prep Kit 2.0 (100-938-900)


HiFiViral SARS-CoV-2 Kit (102-132-000)

SMRTbell Express TPK 2.0 (100-938-900)

Protocol Contents

- 1. RNA input requirements and best practices recommendations for preparing master mixes, handling RNA samples, and sealing reaction plates
- 2. Instructions for performing enrichment of SARS-CoV-2 viral cDNA products using HiFiViral SARS-CoV-2 Kit (<u>102-132-000</u>)
- Instructions for pooling amplified SARS-CoV-2 cDNA products and constructing SMRTbell libraries using SMRTbell Express Template Prep Kit 2.0 (<u>100-938-900</u>)

PacBio Documentation (102-188-80

אכן כל איני א

REQUIRED MATERIALS & EQUIPMENT

ITEM	WHERE USED	VENDOR	PART NUMBER
RNA Preparation			
Nuclease-Free Water	RNA Preparation	Any	Vendor-specific
RNaseZap	RNA Preparation	Thermo Fisher Scientific	AM9780
SARS-CoV-2 RNA Viral Enrichment			
HiFiViral SARS-CoV-2 Kit (Includes items below) SARS-CoV-2 Enrichment Kit Barcoded M13 Primer Plate	cDNA Synthesis & Probe Hybridization Reaction Fill Reaction Cleanup Reaction PCR & Barcoding Reaction Library Pooling	PacBio	102-132-000
SMRTbell Library Preparation			
SMRTbell Express Template Prep Kit 2.0	Library Construction	PacBio	100-938-900
SMRTbell Enzyme Cleanup Kit 2.0	Library Construction	PacBio	101-932-600
DynaMag-2 Magnet	Library Purification	Thermo Fisher Scientific	12321D
Absolute Ethanol, Molecular Biology or ACS Grade	Library Purification	Any	Vendor-specific
ProNex Beads	Library Purification	Promega	NG2001-10mL / NG2002-125mL / NG2003-500mL
DNA LoBind Tubes	Library Construction	Eppendorf	22431021 (1.5 mL)/22431048 (2.0 mL) ¹ 6

אכן כל אכן כא

REQUIRED MATERIALS & EQUIPMENT (CONT.)

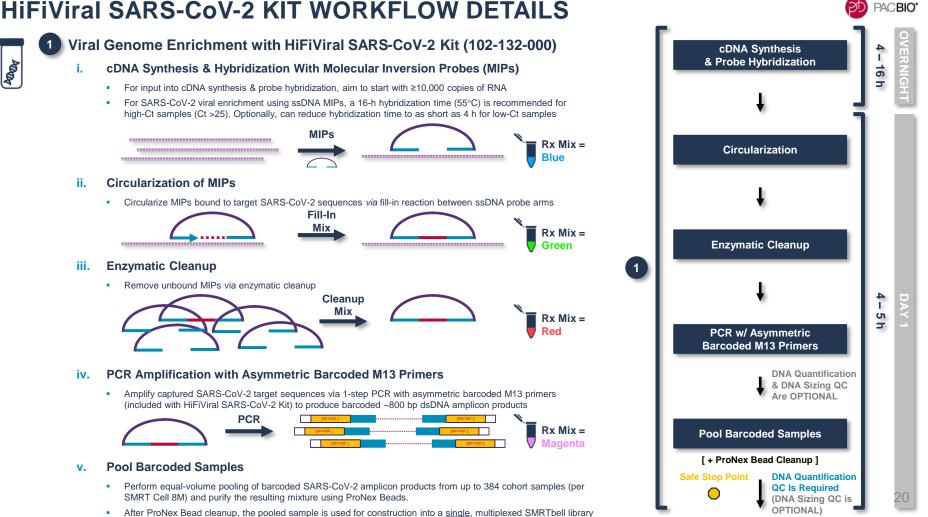
ITEM	WHERE USED	VENDOR	PART NUMBER
Sequencing Preparation			
Sequel II Binding Kit 2.1 and Int Ctrl 1.0	Sequencing on the Sequel II and Ile Systems	PacBio	101-843-000
Sequel II Sequencing Kit 2.0	Sequencing on the Sequel II and Ile Systems	PacBio	101-820-200
SMRT Cell 8M Tray	Sequencing on the Sequel II and IIe Systems	PacBio	101-389-001
Sequel SMRT Oil	Sequencing on the Sequel II and IIe Systems	PacBio	100-621-300
Sequel Pipette Tips v2	Sequencing on the Sequel II and IIe Systems	PacBio	100-667-601
Sequel Mixing Plates	Sequencing on the Sequel II and IIe Systems	PacBio	100-667-500
Sample Plate	Sequencing on the Sequel II and IIe Systems	PacBio	HSP9601
Tube Septa	Sequencing on the Sequel II and IIe Systems	PacBio	001-292-541
Sequel Sample Plate Foil	Sequencing on the Sequel II and IIe Systems	PacBio	100-667-400
DNA / Library QC Evaluation			
Qubit 4 Fluorometer	DNA Quantitation	Thermo Fisher Scientific	Q33238
Qubit 1x dsDNA HS Assay Kit	DNA Quantitation	Thermo Fisher Scientific	Q33230
Bioanalyzer 2100	DNA Sizing	Agilent	G2939A
Agilent DNA 12000 Kit	DNA Sizing	Agilent	5067-1508

אכן כל אכן ייכא 秒 פאכאוסיי

REQUIRED MATERIALS & EQUIPMENT (CONT.)

ITEM	WHERE USED	VENDOR	PART NUMBER
General			
96-well PCR plates	SARS-CoV-2 RNA Viral Enrichment	Bio-Rad	HSP9601
Microseal 'B' Film	SARS-CoV-2 RNA Viral Enrichment	Bio-Rad	MSB1001
Film sealing roller for PCR plates	SARS-CoV-2 RNA Viral Enrichment	Bio-Rad	MSR0001
Thermal Cycler With Heated Lid (Examples below) VeritiPro Thermal Cycler, 96 well ProFlex PCR System	SARS-CoV-2 RNA Viral Enrichment	Thermo Fisher Scientific	A48141 (VentiPro) / 4483636 (ProFlex)
PCR Tube Strips, 0.2 mL	SARS-CoV-2 RNA Viral Enrichment	USA Scientific	1402-4708
96-Well Plate Centrifuge	SARS-CoV-2 RNA Viral Enrichment	Any Vendor	Vendor-specific
8- or 12-Multichannel Pipette	SARS-CoV-2 RNA Viral Enrichment	Any Vendor	Vendor-specific

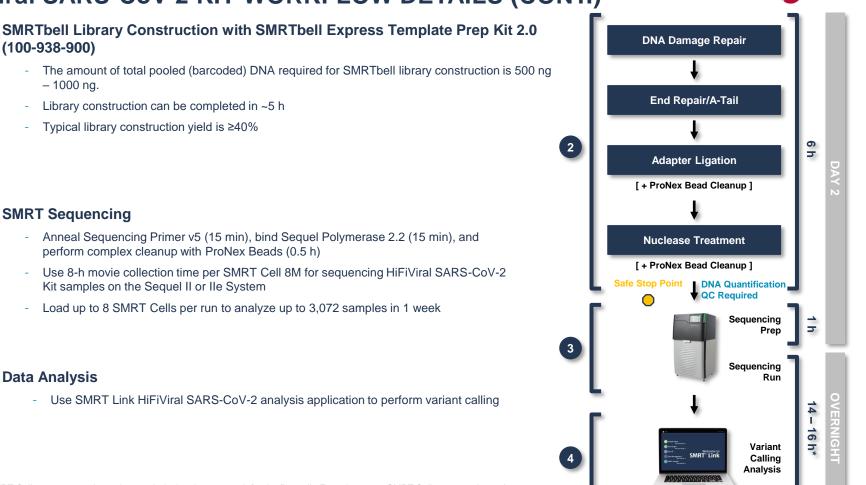
HIFIVIRAL SARS-COV-2 KIT BARCODED M13 PRIMER PLATE


Asymmetric barcode plate map for Barcoded M13 Primer Plate*

- Ready-to-use premixed primer plate containing 384 barcoded M13 primer pairs for asymmetric (dual index) barcoding of multiplexed SMRTbell libraries
 - Plate includes 40 different oligos (16 M13 Forward Primers + 24 M13 Reverse Primers)
- Single-use per well with pierceable foil (can reseal between sample batches)
 - Fill volume in each well = $12 \mu l$ (at 10 μM primer concentration)

	1			2			4	1	5		6		7	٤	3	9		10		11	1	12	1	3	14	1	5	16	5	17		18	1	9	2	0	2	1	22	-	23		24	
A	1002	1050	1002	1051	1002	1052	1002	1053	1002	1054	1002 10	55 1002	1056	1002	1057	1002	1058 1	002 10	i9 100	2 1060	1002	1061	1002	1062	1002 106	3 1002	1064	1002	1065	1002 10	66 1	1002 1067	1002	1068	1002	1069	1002	1070	1002 1	071 1	002 1	072 10	002 1073	
В	1003	1050	1003	1051	1003	1052	1003	1053	1003	1054	1003 10	55 1003	1056	1003	1057	1003	1058 1	003 10	i9 100	3 1060	1003	1061	1003	1062	1003 106	3 1003	1064	1003	1065	1003 10	66 1	1003 1067	1003	1068	1003	1069	1003	1070	1003 1	071 1	003 10	072 10	003 1073	
с	1004	1050	1004	1051	1004	1052	1004	1053	1004	1054	1004 10	55 1004	1056	1004	1057	1004	1058 1	004 10	i9 100	1060	1004	1061	1004	1062	1004 105	3 1004	1064	1004	1065 1	1004 10	66 1	1004 1067	1004	1068	1004	1069	1004	1070	1004 1	071 1	004 1	072 10	004 1073	
D	1005	1050	1005	1051	1005	1052	1005	1053	1005	1054	1005 10	55 1005	1056	1005	1057	1005	1058 1	005 10	i9 100	1060	1005	1061	1005	1062	1005 106	3 1005	1064	1005	1065 1	1005 10	66 1	1005 1067	1005	1068	1005	1069	1005	1070	1005 1	071 1	005 1	072 10	005 1073	
E	1006	1050	1006	1051	1006	1052	1006	1053	1006	1054	1006 10	55 1006	1056	1006	1057	1006	1058	006 10	i9 100	1060	1006	1061	1006	1062	1006 106	3 1006	1064	1006	1065	1006 10	66 1	1006 1067	1006	1068	1006	1069	1006	1070	1006 1	071 1	006 1	072 10	006 1073	
F	1007	1050	1007	1051	1007	1052	1007	1053		1054	and the second second	55 1007	1056	1007	1057	1007	1058	007 10	i9 100	7 1060	1007	1061	1007	1062	1007 106	3 1007	1064	1007	1065	1007 10	066 1	1007 1067	1007	1068	1007	1069	1007	1070	1007 1	071 1	007 10	072 10	007 1073	
G	1008	1050	1008	1051	1008	1052	1008	1053	1008	1054	1008 10	55 1008	1056	1008	1057	1008	1058 1	008 10	i9 100	1060	1008	1061	1008	1062	1008 106	3 1008	1064	1008	1065 1	1008)66 1	1008 1067	1008	1068	1008	10 69	1008	1070	1008 1	071 1	008 10	072 10	008 1073	
н	1009	1050	1009	1051	1009	1052	1009	1053	1009	1054	1009 10:	55 1009	1056	1009	1057	1009	1058 1	009 105	i9 100	9 1060	1009	1061	1009	1062	1009 106	3 1009	1064	1009	1065 1	1009 10	66 1	1009 1067	1009	1068	1009	1069	1009	1070	1009 1	071 1	009 10	072 10	1073	
1	1010	1050	1010	1051	1010	1052	1010	1053	1010	1054	1010 10	55 1010	1056	1010	1057	1010	1058	010 10:	i9 101	0 1060	1010	1061	1010	1062	1010 106	3 1010	1064	1010	1065 1	1010 10	66 1	010 1067	1010	1068	1010	1069	1010	1070	1010 1	071 1	010 1	072 10	010 1073	
J	1011	1050	1011	1051	1011	1052	1011	1053	1011	1054	1011 10	55 1011	1056	1011	1057	1011	1058 1	011 10	i9 101	1 1060	1011	1061	1011	1062	1011 106	3 1011	1064	1011	1065	1011 10)66 1	011 1067	1011	1068	1011	1069	1011	1070	1011 1	071 1	011 1	072 10	011 1073	
K	1012	1050	1012	1051	1012	1052	1012	1053	1012	1054	1012 10	55 1012	1056	101Z	1057	1012	1058 1	012 10	i9 101	2 1060	1012	1061	1012	1062	1012 106	3 1012	1064	1012	1065 1	1012 10)66 1	012 1067	1012	1068	1012	1069	101Z	1070	1012 1	071 1	1012 10	072 10	012 1073	
L	1013	1050	1013	1051	1013	1052	1013	1053	1013	1054	1013 10	55 1013	1056	1013	1057	1013	1058 1	013 10	i9 101	3 1060	1013	1061	1013	1062	1013 106	3 1013	1064	1013	1065	1013 10	66 1	1013 1067	1013	1068	1013	1069	1013	1070	1013 1	071 1	013 1	072 10	013 1073	
м	1014	1050	1014	1051	1014	1052	1014	1053	1014	1054	1014 10	55 1014	1056	1014	1057	1014	1058 1	014 10	i9 101	4 1060	1014	1061	1014	1062	1014 106	3 1014	1064	1014	1065 1	1014 10	66 1	1014 1067	1014	1068	1014	1069	1014	1070	1014 1	071 1	014 1	072 10	014 1073	
N	1015	1050	1015	1051	1015	1052	1015	1053	1015	1054	1015 10	55 1015	1056	1015	1057	1015	1058 1	015 10:	i9 101	5 1060	1015	1061	1015	1062	1015 106	3 1015	1064	1015	1065 1	1015 10)66 1	1015 1067	1015	1068	1015	10 69	1015	1070	1015 1	071 1	015 1	072 10	015 1073	
0	1016	1050	1016	1051	1016	1052	1016	1053	1016	1054	1016 10	55 1016	1056	1016	1057	1016	1058 1	016 10:	i9 101	6 1060	1016	1061	1016	1062	1016 106	3 1016	1064	1016	1065 1	1016 10	66 1	016 1067	1016	1068	1016	1069	1015	1070	1016 1	071 1	1016 10	072 10	016 1073	
Р	1017	1050	1017	1051	1017	1052	1017	1053	1017	1054	1017 10	55 1017	1056	1017	1057	1017	1058 1	017 10	i9 101	7 1060	1017	1061	1017	1062	1017 106	3 1017	1064	1017	1065	1017 10	66 1	017 1067	1017	1068	1017	1069	1017	1070	1017 1	071 1	017 1	072 10	017 1073	
	FO	RWAR	D																																									
	R	leverse																																										

HiFiViral SARS-CoV-2 KIT WORKFLOW DETAILS


HiFiViral SARS-CoV-2 KIT WORKFLOW DETAILS (CONT.)

(100-938-900)

- 1000 na.

SMRT Sequencing

Data Analysis

ACBIO*

* For multi-SMRT Cell runs, sequencing + data analysis time is ~14 – 16 h for the first cell. For subsequent SMRT Cells, sequencing + data analysis time is reduced to ~9 - 10 h per cell due to parallelization of sequencing and analysis functions during the instrument run.

HiFiViral SARS-CoV-2 KIT SAMPLE PREP WORKFLOW TIMING SUMMARY

Efficient Workflow (~1 – 2.5 Hours Hands-On Time) Enables Sample to Answer in ~28 – 42 Hours

WORKFLOW STEP	HANDS-ON (MIN)	WALK-AWAY (HRS)	cDNA Synthesis & Probe Hybridization
SARS-CoV-2 RNA Enrichment (~22 h)			
cDNA Synthesis	5 – 15	1.0	
Probe Hybridization with MIPs	5 – 15	4.0 - 16.0	Circularization & Cleanup
Circularization (Fill-in Reaction)	5 – 15	1.0	
Enzymatic Cleanup Reaction	5 – 15	1.2	
PCR with Barcoded M13 Primers	10 – 30	1.5	PCR with Asymmetric Barcoded M13 Primers (F/R)
Pooling (DNA sizing QC is optional)	5 – 10		L
1.3X ProNex Bead Cleanup + Qubit Assay	5 – 10	0.3	
Total	~40 – 110	~9.0 - 21.0	Pool Barcoded Samples
SMRTbell Library Construction (~5 h)			ProNex Bead
DNA Damage Repair	2 – 4	0.5	Cleanup
End Repair / A-Tailing	2 – 4	1.0	
Adapter Ligation	2 – 4	1.2	SMRTbell Library Construction
1.3X ProNex Bead Cleanup	2 – 4	0.3	ProNex Bead
Nuclease Treatment	2 – 4	0.5	Cleanup
1.3X ProNex Bead Cleanup + Qubit Assay	5 – 10	0.3	Sequencing Preparation
Total	~15 – 30	~3.8	(Anneal Primer / Bind Polymerase / Cleanup
Sequencing Preparation (~1.5 h)			+
Anneal Sequencing Primer	2.5 – 5	0.25	SMRT Sequencing
Bind Polymerase	2.5 – 5	0.25	(8-h movie collection per SMRT Cell 8M)
1.2X ProNex Bead Complex Cleanup	5 – 10	0.5	
Total	~10 – 20	~1.0	

* For multi-SMRT Cell runs, sequencing + data analysis time is ~14 – 16 h for the first cell. For subsequent SMRT Cells, sequencing + data analysis time is reduced to ~9 – 10 h per cell due to parallelization of sequencing and analysis functions during the instrument run.

0

OVERNIGHT

With SMRT Link

16

4 – 5 h

6 h

אמליכן כל אכן כל אנא 🔊 אמכאסייט אנא איז איז א גער א

RNA INPUT REQUIREMENTS FOR VIRAL ENRICHMENT USING HiFiViral SARS-CoV-2 KIT

- Best results will be achieved if reactions contain at least 10,000 copies of RNA.
 - Samples with higher copy numbers of RNA virus will generally produce superior results.
 - See at table at right for example viral copy number values converted from a Ct scale*
- Purified RNA should be resuspended in RNase-free water or TE with a pH no greater than 7.5.
- Contaminants including ethanol, sodium azide, sodium acetate, and guanidine salts may affect performance.
- DNase treatment is optional but the presence of small amounts of human DNA should not affect performance.
- If RNA is quantified, a method that is specific for RNA is recommended (e.g., Qubit RNA BR Assay Kit or qRT-PCR), rather than one that will also detect DNA.
- To reduce inter-sample performance variability, all samples in a batch should be quantified using the same method and normalized to the same concentration.

Example viral copy number values shown in Table below are converted from a Ct scale after Han *et al.* 2021.

Sample Ct	Viral Copy Number*
19	6 Million
20	3 Million
21	1 Million
24	100,000
27	10,000
30	1,000
33	100
35	3

* **NOTE:** A Ct value itself **cannot** be directly interpreted as viral load without a standard curve using reference materials. [See *Han M.S., et al. (2021). RT-PCR* for SARS-CoV-2: quantitative versus qualitative. The Lancet Infectious Disease 21(2) p165]

GENERAL BEST PRACTICES RECOMMENDATIONS FOR VIRAL ENRICHMENT USING HiFiViral SARS-CoV-2 KIT

Best Practices

Master Mixes

- 1. Prepare master mixes in a PCR workstation.
- The PCR workstation should be UV-irradiated after each setup. If unsure, UV-irradiate the workstation before setting up a master mix.
- NOTE: do not turn on the UV light when reagents are in the workstation
- Master mixes are prepared in 0.5mL, <u>1.5 mL or 2 ml</u> down.
- If using multichannel pipette to transfer master mixes, pre-aliquot appropriate volume with overage into PCR strip tubes.

Samples

- 1. RNA samples should be stored at -80°C until use and thawed on ice.
- 2. Heavily degraded RNA or RNA samples with many freeze-thaw cycles should be avoided
- 3. All work surfaces and gloves should be sanitized with RNaseZap (or the equivalent) prior to a
- 4. For most consistent performance, all samples included in a batter be from the same sample type and extracted by the same RNA extraction procedure
- 5. A no-RNA control is recommended but not required.
- 6. Upon thawing frozen samples, briefly vortex and spin down prior to use.

Reaction Plates

- Always seal plates with Microseal 'B' Film (clear adhesive). Foil seals are not recommended for any step in this protocol. However, they can be used for plates that will be placed in the freezer for storage.
- Using a roller for Microseal 'B' Film, apply firm pressure and seal over the tops of all wells. Ensure all wells, especially those along the edges of the plate, are visibly sealed.
- Inspect the corners of the plate to confirm that the seal is in contact with the plate. If not, apply firm pressure and roll until the film is in contact with the plate.
- When removing plate seals, a heated plate sould loosen the adhesive.
- Centrifuge in an Eppendorf 5810 fitted with a swinging bucket plate rotor at maximum rpm for approximately 30 sec.
- After centrifugation, inspect the bottom of the plate to ensure the expected volume is present in every well.

المستحلكين بالاختصار ومسمون الأمنان والمسترك بالتربي التقريب المتحلي بالاغرار ويتعاور معاور المتحاطيني سالاتين والمحاص

Preparing Master Mixes

- Prepare master mixes in a PCR workstation and have them ready before the end of the prior incubation steps
- Use multichannel or electronic pipettes to facilitate transfer of master mixes to sample wells

PAC**BIO**®

Handling RNA Samples

- Use special care when handling small volumes of reagents
- Be careful when removing plate seals to avoid cross contamination

Preparing Reaction Plates

- Always perform a visual check of liquid volumes before and after each incubation step
- Verify that the liquid solution color at each reach step is correct
- Proper plate sealing is critical, especially for the overnight probe hybridization step

HiFiViral SARS-CoV-2 KIT PROCEDURAL NOTES

1. cDNA Synthesis and Probe Hybridization

cDNA Synthesis and Probe Hybridization

Before setting up the reaction, the workstation should be sanitized with RNaseZap and UV-irradiated without the presence of the reagents. All samples and reagents should be kept on ice while setting up the reaction.

- Prepare labware and reagents.
 - a. Label one or more 96-well PCR plates. Alternatively, for a small number of reactions, PCR tube strips may be used.
 - b. Retrieve extracted RNA samples from storage.
- 2. Pipette 6 µL of sample RNA into each well of the reaction plate. Be sure to follow RNA into
- recommendations. Use nuclease-free water to adjust sample RNA volume, if needs 3. Prepare RT-Hybridization Master Mix on ice.
 - a. Allow RT Mix and Probe Mix to fully thaw. Briefly vortex and set
 - b. Prepare master mix with 12.5% overage as indicated in.⁴
 - elow, Preparing fewer than 24 reactions at a time is not recommended.
 - c. RT Mix is viscous, pipette slowly.

Reagent	1X reaction	96 reactions (with overage)	\checkmark	Notes
RT Mix	1.6 µL	172.8 µL		
Probe Mix	0.4 µL	43.2 µL		

- 4. Transfer 2 µL of RT-Hybridization Master Mix into each sample-containing well in the reaction plate RT-Hybridization Master Mix is viscous, pipel
- 5. Seal the plate tightly with a film. Poor sealing could result in significant
- 6. Spin down the 96-well plate.
- 7. Vortex a few times with short pulses and spin down.
- 8. Perform a quick visual check of the liquid level and take note of any well with low volume. The reaction should now be a homogenous pale blue color.
- 9. Place the reaction plate in the thermal cycler and run the following program (set the heated lid at 105°C).

Step	Temperature	Time
1	25°C	10 minutes
2	50°C	50 minutes
3	95°C	
4	55°C	24 hours * (16hrs for Probe Hybridization
		and 1hr for Fill-in Reaction
5	55°C	Hold

10. Make a note of the thermal cycler start time. A hybridization time of 16 hours (the 55°C step) is recommended for high Ct samples (Ct >25). A 4hr hybridization could be considered if most of samples have low Ct value (Ct <25). Start preparing for the fill reaction just prior to the end of hybridization (approximately 17 hours from the start of the cycling program).

Version 02 (November 2 24)

Preparing Master Mixes

Slowly pipette small reaction volumes and viscous reagents (Master Mix volumes shown in the table only include 12.5% overage)

Preparing Reaction Plates

- Seal reaction plates tightly with Microseal 'B' Film to minimize evaporation, especially along the plate edges and corners
- Verify that the liquid solution color for each Hybridization reaction is **blue** and homogeneous

Starting and Monitoring Hyb Reactions

- Do not use guestionable or problematic thermal cycler equipment for this viral enrichment workflow
- A 16-hour hybridization time is recommended Make note of the reaction start time (incubating slightly longer than 16 hours should not have a negative impact)
- Keep the thermal cycler program running after probe hybridization is completed to maintain proper temperature control of the heating block

HiFiViral SARS-CoV-2 KIT PROCEDURAL NOTES (CONT.)

2. Circularization (Fill Reaction)

Fill Reaction

5. Pe

Before the end of the probe hybridization reaction, allow the Fill-in Mix to fully thaw. Briefly vortex and spin down. Do not remove the reaction plate from the thermal cycler until the reagent is ready and the hybridization time is over. Correct timing is important to maximize result quality

- 1. Remove the sample plate from the thermal cycler. Keep the program running
- 2. Spin down the plate, perform a quick visual check of the liquid level to make sure there are no droplets on the top seal or side walls, and remove the seal carefully to avoid cross contamination
- 3. At room temperature, transfer 2 uL of Fill-in Mix to each sample well

and the second design of the

- It is important to perform the transfer as fast as possible to minimize non-specific binding; aim to finish within 1 minutes
- 4. Rese e plate tightly with a new film, vortex a few times with short pulses, and spin down the plate.
 - quick visual check of the liquid level and take note of any well with low volume. The reaction w be a homogenous pale green color.

reaction plate in the thermal cycler and continue the program for another 60 minutes.

he time the reaction plate was returned to the thermal cycler; correct timing is important to result quality.

Preparing Fill Reaction Plates

- Add reagents at room temperature, DO NOT cool on ice
- Fill Reaction steps are time sensitive - Work quickly with a multichannel pipettor to complete all liquid transfer steps within 5 minutes for best capture results
- Verify that the liquid solution color for each Fill Reaction is green and homogeneous

3. Cleanup Reaction

Cleanup Reaction

7. The

Before the end of the fill reaction, allow the Cleanup Mix to fully thaw. Briefly vortex and spin down. Do not remove the reaction plate from the thermal cycler until the reagent is ready. Correct timing is important to maximize result quality.

- Remove the sample plate from the thermal cycler
- 2. Spin down the plate, perform a guick visual check of the liguid level to make sure there are no droplets on the top seal or side walls, and remove the seal carefully to avoid cross contamination.
- 3. At room temperature, transfer 2 µL of Cleanup Mix to each sample well
- It is important to perform the transfer to minimize non-specific binding; aim to finish within 10 minutes.
- 4. Reseal the plate tightly with a new film, vortex a few times with short pulses, and spin down the plate.
- 5. Perform a quick visual check of the liquid level and take note of any well with low volume. The reaction should now be a homogenous red color.
- Place the reaction plate in the thermal cycler and run the following program (set the heated lid at 105°C).

Step	Temperature	Time
1	45°C	60 minutes
2	95°C	3 minutes
7	4°C	Hold

Preparing Cleanup Reaction Plates

- Add reagents at room temperature, DO NOT cool on ice
- Cleanup Reaction steps are time sensitive Work quickly with a multichannel pipettor to complete all liquid transfer steps within 5 minutes for best capture results
- Verify that the liquid solution color for each Cleanup Reaction is **red** and homogeneous

ACBIO

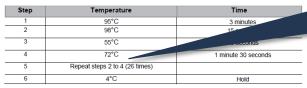
approximately 65 minutes to run; proceed immediately to the cDNA amplification

ארכן כל אכן כל אנגי

HiFiViral SARS-CoV-2 KIT PROCEDURAL NOTES (CONT.)

4. PCR Amplification With Barcoded M13 Primers

cDNA Amplification


Before the end of the cleanup reaction, allow the PCR Mix and the primer plate to fully thaw. Spin down the primer plate before opening. Briefly vortex the PCR Mix and spin down. The reaction plate and reagents should be kept on ice while setting up the reaction.

- 1. Remove the sample plate from the thermal cycler.
- Spin down the plate, perform a quick visual check of the liquid level to make sure there are no droplets on the top seal or side walls, and remove the seal carefully to avoid cross contamination.
- 3. Prepare the PCR reaction as follow.

Reagent	Stock Conc.	1X reaction	
Cleanup reaction		9.0	
PCR Mix		12 µL	
Asymmetric Barcoded M13 Primer Mix	10 µM	2.4 µL	
Total Volume		24 µL	

* The expected volume after the cleanup reaction is approximately 9.6 µL, considering some degree of evaporation during the prior steps

- 4. Using a multichannel pipette, transfer 12 µL of PCR Mix to the sample plate
- Transfer 2.4 µL of premixed asymmetric barcoded M13 primers from the primer plate to the corresponding sample wells.
- 6. The total reaction volume in each well is approximately 24.0 µL.
- 7. Reseal the plate tightly with a new film, vortex a few times with short pulses, and spin down the plate.
- Perform a quick visual check of liquid level and take note of any well with low volume. The reaction should now be a homogenous magenta color.
- 9. Place the PCR reactions in a thermal cycler and run the following program (set the heated lid at 105°C).

^{10.} After amplification, briefly spin down the plate.

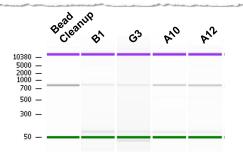
11. Immediately proceed to the "Sample Pooling for Library Construction" section if not performing the optional Library Quantitation/QC step. Alternatively, the reaction plate can be stored at -20°C until further processing.

Preparing PCR Reaction Plates

- Expected sample volume after cleanup step is ~9.6 μL.
- PCR amplification step is not time-sensitive
- Verify that the liquid solution color for each PCR Reaction is magenta and homogeneous

Starting and Monitoring PCR Reactions

- PCR thermal cycler program at this step takes ~1.5 hours to complete (27 cycles)
- Expect some degree of cumulative evaporation loss to occur from completing previous steps in the workflow – If any sample in a well has significantly less than 9.6 µL, add nuclease-free water to bring up the sample volume and document this action
- After completing the PCR step, amplified cDNA samples can be stored at -20°C until further processing

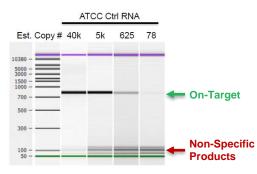

אמסאי 🔂 פרכן כל אכן כל א

HiFiViral SARS-CoV-2 KIT PROCEDURAL NOTES (CONT.)

4. PCR Amplification With Barcoded M13 Primers (Cont.)

Library Quantification/QC (Optional)

- 1. Remove the reaction plate from the thermal cycler.
- Spin down the reaction plate and perform a quick visual check of the liquid level. Take note of any well with low volume, which indicates excessive evaporation during amplification.
- 3. Remove the seal carefully to avoid cross contamination.
- 4. Use 1 µL of sample to quantify with a Qubit dsDNA HS kit.
- Individual sample QC can be performed on the Agilent 2100 Bioanalyzer. Use a DNA12000 chip and follow the manufacturer's setup instruction.
- A target peak of ≥700 bp should be detected. A small peak of ~170-200 bp representing non-specific amplicons may or may not be present. The ~170-200 bp amplicons will be removed when the sample pool is purified.



Example post-PCR DNA sizing analysis results for extracted viral RNA samples.

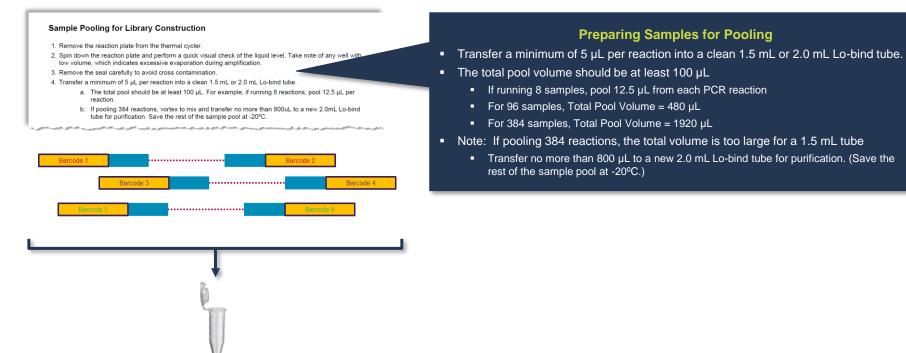
- Spot-checking PCR amplification products prior to pooling is highly recommended when performing the HiFiViral workflow for the first time
- 1.3X ProNex Bead purification can help remove non-specific amplification products

Post-PCR DNA Quantification and DNA Sizing QC (Optional)

Performing post-PCR DNA sizing quantification and sizing QC steps is recommended and can be useful for verifying sample integrity prior to SMRTbell library construction as well as downstream troubleshooting

PCR Product Yield vs. Input Control RNA Copy Number

Example post-PCR DNA sizing analysis results for ATCC Control RNA samples.


- Going from high to low copy number, the ontarget band diminishes, and the amount of non-specific amplification products increases
- 1.3X ProNex Bead purification can help remove non-specific amplification products

Example post-PCR yield results for ATCC Control RNA samples.

 Higher-copy number samples are generally correlated with higher PCR yields (*via* Qubit dsDNA HS assay quantification) אמערק כל אכן כל איכין כל איכין כל איכין כל איכין כל איכין כל איכין איכין איכין איכין איכין איכין איכין איכין אי

HiFiViral SARS-CoV-2 KIT PROCEDURAL NOTES (CONT.)

5. Sample Pooling for SMRTbell Library Construction

ארכן כל אכן כא כא כא

HiFiViral SARS-CoV-2 KIT PROCEDURAL NOTES (CONT.)

5. Sample Pooling for SMRTbell Library Construction (Cont.)

Purification of Pooled Library

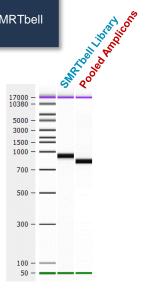
STEP	\checkmark	Purification with ProNex Beads	Notes
1		Add 1.3X volume of resuspended, room-temperature ProNex beads to the pooled library. Pipette mix 10 times. Perform a quick-spin to collect all liquid from the sides of the tube.	
2		Incubate the sample on the bench top for 5 minutes at room temperature.	
3		Place the tube on a magnetic stand to separate the beads from the supernatant. Use a P200 pipette to remove the supernatant.	
4		Wash 2 times with 1400 μ L (or enough to fully cover the beads) of freshly prepare 80% ethanol. After removal of the second 1400 μ L ethanol wash, spin-	
5		Remove the tube from the magnetic stand. Imposition to the stand pipette the mix to resuspend. Perform a quick-guarke context all liquid from the sides of the tube. Place at room temperature for 5 minutes to elute the DNA from the beads.	
6		Place the tube on a magnetic stand to separate the beads from the supernatant. Transfer the eluted DNA sample to a new tube.	
7		Use 1 µL of sample to quantify with a Qubit dsDNA HS kit.	

والمحمد ومحمد المشاطع ومرجعتها والرواب ومحمد والرواب والمحاطي والمتعلق والمتعلق والمتعون والتعاصي والمراجع والمراجع والمحمد

Library Quantification/QC (Optional)

- Pooled sample QC can be performed on the Agilent 2100 Bioanalyzer. Use a DNA12000 chip and follow the manufacturer's setup instruction.
- A target peak of ≥700 bp should be detected. Non-specific amplicons (~170-200 bp) should be removed completely.

י מעק איינרע אי איינע געענע געעע אייריע איינטער איינערע איירא איינע איינע איינע איינע איינע אייראער אייראער אי

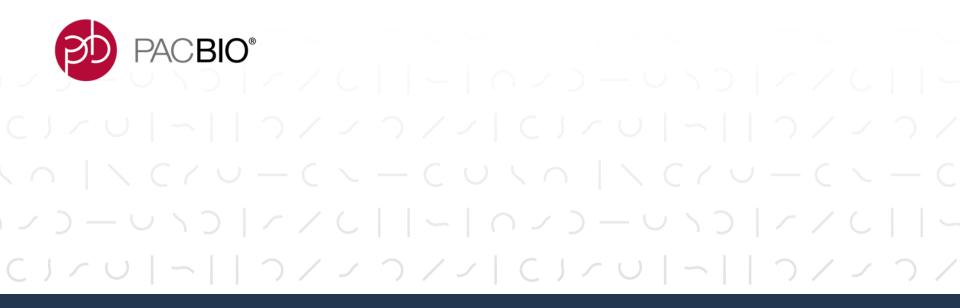

DNA Sizing QC

- DNA sizing QC can optionally be performed on the pooled sample using an Agilent 2100 Bioanalyzer
 - A target peak of ≥700 bp should be detected
 - Non-specific amplicons (~170-200 bp) should be removed completely.

Purifying Pooled Samples

- Add 1.3X volume of resuspended, room-temperature ProNex beads to the pooled library.
 - Bead incubation: 5 mins, Room Temperature
 - Elution incubation: 5 mins, Room Temperature
- The total amount of purified pooled (barcoded) DNA required for SMRTbell library construction is 500-1000 ng.

אר 🔂 פארק כל אכן כל איכן כל איכ


SMRTBELL EXPRESS TEMPLATE PREP KIT 2.0 AND SMRTBELL ENZYME CLEANUP KIT 2.0 REAGENT HANDLING RECOMMENDATIONS

- Several reagents in the kit are sensitive to temperature and vortexing
- PacBio highly recommends:
 - Never leaving reagents at room temperature
 - Working on ice at all times when preparing master mixes for SMRTbell library construction
 - Finger tapping followed by a quick-spin prior to use

LIST OF TEMPERATURE-SENSITIVE REAGENTS INCLUDED IN SMRTBELL EXPRESS TPK 2.0 AND SMRTBELL ENZYME CLEANUP KIT 2.0.

ΡΑСΒΙΟ ΚΙΤ	REAGENT	WHERE USED
	DNA Prep Additive	Remove Single-Strand Overhangs
	DNA Prep Enzyme	Remove Single-Strand Overhangs
	DNA Damage Repair Mix v2	DNA Damage Repair
SMRTbell Express Template Prep Kit 2.0	End Prep Mix	End-Repair/A-tailing
(PN 100-938-900)	Overhang Adapter v3	Ligation
	Ligation Mix	Ligation
	Ligation Additive	Ligation
	Ligation Enhancer	Ligation
SMRTbell Enzyme Cleanup Kit 2.0	SMRTbell Enzyme Clean Up Mix	Nuclease Treatment
(PN 101-932-600)	SMRTbell Enzyme Clean Up Buffer	Nuclease Treatment

Multiplexed SARS-CoV-2 Library Sequencing Workflow Recommendations

יס מאכן כל אכן כל א

SAMPLE SETUP AND RUN DESIGN RECOMMENDATIONS FOR HiFiViral SARS-Cov-2 LIBRARY SAMPLES (SEQUEL II/IIE SYSTEMS)

Follow SMRT Link Sample Setup instructions using the recommendations provided in *Quick Reference Card – Loading and Pre-Extension Time Recommendations for the Sequel II/Ile Systems* (101-769-100) for preparing HiFiViral samples for sequencing

Application	Library Prep Kit*	Sequencing Primer (Annealing Time)	Binding Kit (Binding Time)	Complex Cleanup	Loading Concentration Range (pM)
HiFiViral SARS-CoV-2	Express	v4	Binding Kit 2.1	1.2X ProNex	100 - 300
(1 kb)	TPK 2.0	(15 min)	(15 min)	Beads	

Application	Pre-Extension Time	Adaptive Loading	Movie Collection	
	(hours)	Target (P1 + P2)	Time (hours)	
HiFiViral SARS-CoV-2 (1 kb)	0	N/A	8	

→ For SMRT Link v10.2: Select 'Viral Sequencing / HiFiViral SARS-CoV02' from the Application field drop-down menu in the SMRT Link Sample Setup and SMRT Link Run Design user interface

		Application	~
	Avail	able Volume	Whole Genome Sequencing HiFi Reads Continuous Long Reads
	Sample C	oncentration	Microbial Assembly RNA Sequencing Iso-Seq Method
Sample Setup		Insert Size	Viral Sequencing HiFiViral SARS-CoV-2 Metagenomics
_	Inte	ernal Control	Full-Length 16S rRNA Sequencing Shotgun Metagenomic Profiling or Assembly Amplicon Sequencing
	Cleanup Antie	cipated Yield	<3kb Amplicons >=3kb Amplicons Other
Welcome to Winner Simple Simp	Recommended Concentra	tion on Plate	Custom
ACCONCICCUM	Application Required		:
	Well Sample Name 🕄 Required Bio Sample Name 🕄 Required	Whole Genome HiFi Reads Continuous Lou Microbial Asset	ng Reads
😥 Run Design	Sample Comment	RNA Sequencing Iso-Seq Metho Viral Sequencing HiFiViral SARS	d g
	Sample Well		S rRNA Sequencing
	Template Prep Kit Required	Amplicon Seque	ns l
	Binding Kit Required	>=3kb Amplice Other Custom	ons
	Sequencing Kit	-	•

ארכן כל ארכי ארמין כל ארכי ארמי 😥 PAC**BIO***

IMPORTING THE BARCODE FASTA FILE INTO SMRT LINK FOR AUTOMATED DEMULTIPLEXING OF HiFiViral SARS-Cov-2 LIBRARY SAMPLES

Note: SMRT Link v10.2 software installations by default come **pre-bundled** with FASTA files containing a list of PacBio barcodes recommended for use with specific multiplexed SMRT sequencing applications

If your SMRT Link installation does **not** already include an appropriate barcode FASTA file, the following steps describe how to import such a file for use in automated demultiplexing (refer to "Importing Data" section in the <u>SMRT Link User Guide</u>):

- Download the FASTA file containing the relevant barcode sequences from PacBio's <u>Multiplexing</u> website or contact PacBio <u>Technical Support</u> to obtain a copy of the appropriate Barcode FASTA file. For example:
 - HiFiViral_SARS-CoV-2_M13barcodes FASTA file contains a list of 32 Forward and 32 Reverse M13 barcodes for use with the Barcoded M13 Primer Plate included in HiFiViral SARS-CoV-2 Kit (102-132-000)

EXAMPLE FASTA FILE CONTAINING A LIST OF FORWARD AND REVERSE M13 BARCODES

- >M13_bc1005_F CACTCGACTCTCGCGTGTAAAACGACGGCCAGT >M13_bc1006_F CATATATATCAGCTGTGTAAAACGACGGCCAGT >M13_bc1007_F TCTGTATCTCTATGTGGTAAAACGACGGCCAGT >M13_bc1008_F ACAGTCGAGGCGTGCGGTAAAACGACGGCCAGT >M13_bc1009_F ACACACGCGAGACAGAGTAAAACGACGGCCAGT >M13_bc1010_F ACGCGCTATCTCAGAGGTAAAACGACGGCCAGT >M13_bc1011_F CTATACGTATATCTATGTAAAACGACGGCCAGT >12_F

IMPORTING THE BARCODE FASTA FILE INTO SMRT LINK FOR AUTOMATED DEMULTIPLEXING OF HiFiViral SARS-Cov-2 LIBRARY SAMPLES (CONT.)

- 2. Import the desired FASTA file into SMRT Link.
 - . On the SMRT Link Home Page, select Data Management.
 - II. Click Import Data and follow the steps below:

Specify whether to import data from the SMRT Link Server, or from a Local File System. (Note: Only references and barcodes are available if you select Local File System.)

Select the data type to import: Barcodes - FASTA (.fa or .fasta), XML (.barcodeset.xml), or ZIP files containing barcodes.

Navigate to the appropriate file and click **Import**. The selected barcode filed is imported and becomes available for viewing in the SMRT Link Data Management module home screen.

😥 PACBIO' Data Management 🕶			smark (Lab Tech) 🎄 ?	
Data Management / Import Import Data	2 Select File	3	Projects: All My Projects	
SMRT Link Server Local File System	Data Type Barcodes (FASTA) Barcodes (FASTA) Barcodes (ZIP) References (FASTA) References (ZIP)	Browse Local Files Select File: (.fa, .fasta)	Browse Timport	

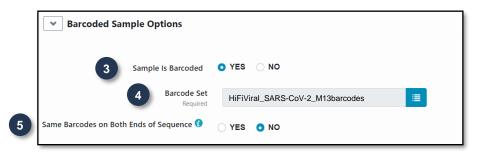
ארק כל אכן כל איכן כל איכן כל איכ

SMRT LINK RUN DESIGN SETUP PROCEDURE FOR HiFiViral SARS-Cov-2 LIBRARY SAMPLES

- A. Specifying Sample Information and Movie Collection Parameters
 - Under Application Type, select 'Viral Sequencing / HiFiViral SARS-CoV-2'
 - Verify all default values in auto-filled sample information fields match the recommended values shown in *Quick Reference Card – Loading and Pre-Extension Time Recommendations for the Sequel II/IIe Systems* (101-769-100) for preparing HiFiViral samples for sequencing

- Enter a Well Sample Name for your library sample
- We recommend using a starting on-plate concentration (OPLC) = 200 pM and adjusting higher or lower if needed to achieve optimal *P1* loading

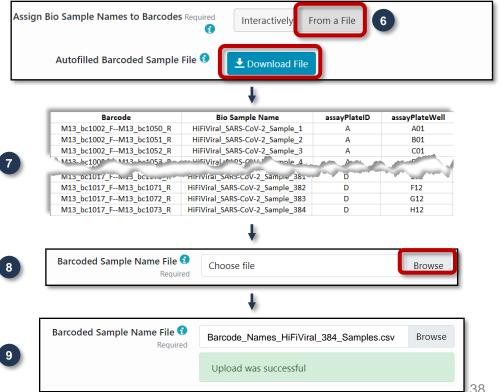
SAMPLE 1: HiFiViral_SARS-CoV-2_Library_01, A01, 8	hour movie, 800 bp insert	
Import from Sample Setup	E Select Sample	
1 Application Required	HiFIViral SARS-CoV-2	٠
2 Well Sample Name 3 Required	HiFiViral_SARS-CoV-2_Library_01	
Bio Sample Name 🕄		
Sample Comment		
Sample Well	A01	
Template Prep Kit Required	SMRTbell® Express Template Prep Kit 2.0	•
Binding Kit Required	Sequel® II Binding Kit 2.1	\$
Sequencing Kit Required	Sequel® II Sequencing Plate 2.0 (4 rxn)	\$
DNA Control Complex	Sequel® II DNA Internal Control 1.0	\$
Insert Size (bp) Required	800	
Recommended Concentration on Plate (pM)	100-300 pM	
On-Plate Loading Concentration (pM) Required	200	
Movie Time per SMRT Cell (hours)	8	
Use Pre-Extension	VES ONO	
Generate HiFi Reads	• ON INSTRUMENT O IN SMRT LINK O DO NOT GENERATE	36



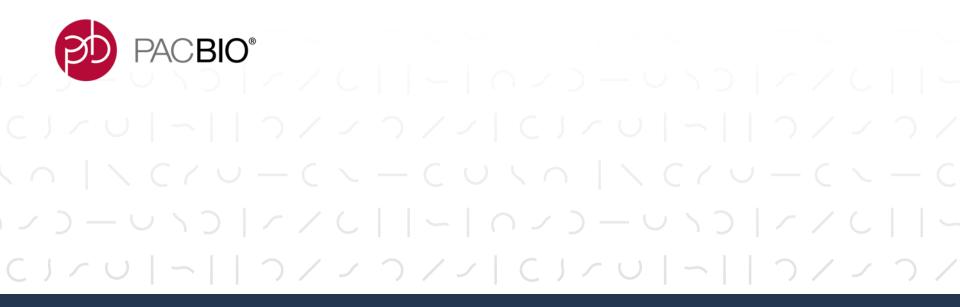
SMRT LINK RUN DESIGN SETUP PROCEDURE FOR HiFiViral SARS-Cov-2 LIBRARY SAMPLES (CONT.)

- B. Enabling Automated SARS-CoV-2 Data Analysis in SMRT Link and Specifying Sample Barcoding Information
 - 1. To enable automated SARS-CoV-2 data analysis in SMRT Link:
 - 1
- Select YES for 'Automatic Launch of SARS-CoV-2 Analysis'
- Enter an Analysis Name

- 2. Under Barcoded Sample Options, the following options are automatically specified if *HiFiViral SARS-CoV-2* is selected for Application Type:
 - Sample is Barcoded: Yes
 - Barcode Set: HiFiViral_SARS-CoV-2_M13barcodes
 - Same Barcodes on Both Ends of Sequence: No


PACBIO*

SMRT LINK RUN DESIGN SETUP PROCEDURE FOR HiFiViral SARS-Cov-2 LIBRARY SAMPLES (CONT.)


- 3. Specify Barcode assignments and Bio Sample Names as follows:
- Under Assign Bio Sample Names to Barcodes: Click From a File, then click Download File.
- Edit the file and enter the biological sample name, Plate ID and Plate Well associated with each unique forward + reverse barcode pair listed in the first column; then save the file.
- Delete entire rows of barcodes not used
- Allowed characters*: Alphanumeric; dot; underscore; hyphen. Other characters will be automatically removed.
- Browse for the Barcoded Sample File you just edited and click on Open.

You will see 'Upload was successful' appear on the line below, assuming the file is formatted correctly.

Refer to "Working with Barcoded Data" section in the SMRT Link User Guide for further details on how to specify barcode setup and sample name information in a Run Design

* DO NOT includes spaces – Sample Names must be unique and will be truncated after any spaces.

Multiplexed SARS-CoV-2 Data Analysis Recommendations

אכן כדי כן כלייכן כלייכן כלייכן כלייכן כלייכן אימי 秒 PAC**BIO**

USE SMRT LINK TO EASILY ANALYZE MULTIPLEXED HIFI DATA FROM SARS-CoV-2 SURVEILLANCE SAMPLES

Analyze HiFiViral SARS-CoV-2 HiFi Data Using SMRT Link* by Creating an **Auto Analysis** in Run Design or by Performing a **Manual Analysis** in SMRT Analysis

Creating an Auto Analysis in Run Design

- HiFiViral SARS-CoV-2 Analysis Application can be run using the Auto Analysis feature available in SMRT Link Run Design
- This optional Run Design feature allows users to automatically complete all necessary analysis steps immediately after sequencing on the Sequel II and Ile Systems without manual intervention
- HiFiViral Auto Analysis workflow **automatically** launches CCS Analysis, Demultiplex Barcodes, and HiFiViral SARS-CoV-2 Analysis.

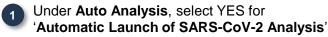
HiFiViral SARS-CoV-2 Auto Analysis Workflow

* Analysis is supported for samples isolated from individual humans and has not been designed or validated for use with other sample types (e.g., wastewater samples).

Performing a <u>Manual Analysis</u> in SMRT Analysis

- *HiFiViral SARS-CoV-2* Analysis Application can also be run by performing a manual analysis in SMRT Link SMRT Analysis
- This process requires users to manually prepare input data for the HiFiViral SARS-CoV-2 Analysis Application
- HiFiViral manual analysis workflow requires manually specifying CCS Analysis ('Generate HiFi Reads') in Run Design, and then manually launching Demultiplex Barcodes and HiFiViral SARS-CoV-2 Analysis applications in SMRT Analysis

HiFiViral SARS-CoV-2 Manual Analysis Workflow



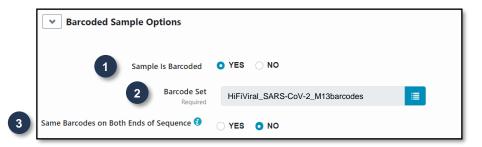
ארכן כל אכן כל איכן כל איכן כל איכן כל איכן כל איכן כל א

HiFiViral SARS-CoV-2 ANALYSIS SETUP – AUTO ANALYSIS

How to Use SMRT Link Run Design to Create an Auto Analysis

A. Specify Auto Analysis in Run Design

Enter an Analysis Name


B. Specify Barcoded Sample Options

Under **Barcoded Sample Options**, the following options are automatically specified if *HiFiViral SARS-CoV-2* is selected for Application Type in Run Design:

Sample is Barcoded: Yes

- Barcode Set: HiFiViral_SARS-CoV-2_M13barcodes
- Same Barcodes on Both Ends of Sequence: No

PACBIO*

How to Use SMRT Link Run Design to Create an Auto Analysis (Cont.)

	Under Assign Bio Sample Names to Barcodes: From a File, then click Download File.				

	-	
	Э	
Ν.		

Edit the file and enter the **biological sample name**, **Plate** ID and Plate Well associated with each unique forward + reverse barcode pair listed in the first column; then save the file.

- Delete entire rows of barcodes not used
- Allowed characters*: Alphanumeric; dot; underscore; hyphen. Other characters will be automatically removed.

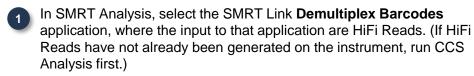
6

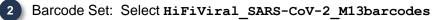
7

- Browse for the Barcoded Sample File you just edited and click on Open.
- You will see 'Upload was successful' appear on the line below, assuming the file is formatted correctly.

Assign Bio Sample Names to Barcodes Required Interactively From a File Autofilled Barcoded Sample File 😚 **Download File** Barcode **Bio Sample Name** assavPlateID assavPlateWell M13 bc1002 F--M13 bc1050 R HiFiViral SARS-CoV-2 Sample 1 Α A01 M13 bc1002 F--M13 bc1051 R HiFiViral SARS-CoV-2 Sample 2 B01 Α M13 bc1002 F--M13 bc1052 R HiFiViral SARS-CoV-2 Sample 3 C01 Α M13-bc100*** M12-bc1052.P-WisiViral MS-C Manale 4 W13 pc1017 F-W.13 bcarrow HIFIVITAL SAKS-COV-2 Sample 38. HiFiViral SARS-CoV-2 Sample 382 M13 bc1017 F--M13 bc1071 R D F12 M13 bc1017 F--M13 bc1072 R HiFiViral SARS-CoV-2 Sample 383 D G12 M13 bc1017 F--M13 bc1073 R HiFiViral SARS-CoV-2 Sample 384 D H12 Barcoded Sample Name File 📀 Choose file Browse Required Barcoded Sample Name File 🕄 Barcode Names HiFiViral 384 Samples.csv Browse Required Upload was successful

Refer to "Working with Barcoded Data" section in the SMRT Link User Guide for further details on how to specify barcode setup and sample name information in a Run Design


* DO NOT include spaces – Sample Names must be unique and will be truncated after any spaces.


אמסאר ארין כל ארכין כל ארכי ארכי ארכי

HiFiViral SARS-CoV-2 ANALYSIS SETUP – MANUAL ANALYSIS

How to Use SMRT Link SMRT Analysis to Perform a Manual Analysis

A. Prepare Input Data for the HiFiViral SARS-CoV-2 Analysis Application by Running Demultiplex Barcodes

Barcodes on Both Ends of Sequence: Select No

SMRT Analysis / Create New Analysis	
1. Select Data 2. Select Analysis	
Analysis Application Required	
Demultiplex Barcodes	•
★ Import Analysis Settings	
Associated Inputs	
Barcode Set Required	
HiFiViral_SARS-CoV-2_M13barcodes	
Same Barcodes on Both Ends of Sequence 🕄	
	43

PACBIO*

How to Use SMRT Link SMRT Analysis to Perform a Manual Analysis (Cont.)

Under Assign Bio Sample Names to Barcodes: Click From a File, then click Download File.

- Edit the file and enter the **biological sample name** associated with each unique forward + reverse barcode pair listed in the first column; then save the file.
 - Delete entire rows of barcodes not used
 - Allowed characters*: Alphanumeric; dot; underscore; hyphen. Other characters will be automatically removed.
- Browse for the Barcoded Sample File you just edited and click on Open.

You will see 'Upload was successful' appear on the line below, assuming the file is formatted correctly.

Enter a Name for the Demultiplexed Output Data Set.

Assign Bio Sample Names to Barcodes Required Interactively From a File Autofilled Barcoded Sample File 😚 **⊥** Download File Barcode **Bio Sample Name** M13 bc1002_F--M13_bc1050_R HiFiViral SARS-CoV-2 Sample 1 M13_bc1002_F--M13_bc1051_R HiFiViral_SARS-CoV-2_Sample_2 HiFiViral SARS-CoV-2 Sample 3 M13 bc1002 F--M13 bc1052 R M13-bc100 M13-bc1052.P-5 HIFIVITAL SAKS-COV-2 Sample 381 M13 001017 F--N.13 bcarrow HiFiViral SARS-CoV-2 Sample 382 M13 bc1017 F--M13 bc1071 R M13 bc1017 F--M13 bc1072 R HiFiViral SARS-CoV-2 Sample 383 M13 bc1017 F--M13 bc1073 R HiFiViral SARS-CoV-2 Sample 384 Barcoded Sample Name File 📀 Choose file Browse 6 Required Barcoded Sample Name File 📀 Browse Barcode Names HiFiViral 384 Samples.csv Required 7 Upload was successful Demultiplexed Output Data Set Name Required 😯 8 HiFiViral SARS-CoV-2 Sample Plate 01 CCS Demux 44

Refer to "Working with Barcoded Data" section in the SMRT Link User Guide for further details on how to specify barcode setup and sample name information in a Run Design

* DO NOT include spaces – Sample Names must be unique and will be truncated after any spaces.

ארק כל אכן כל איכן כל איכן כל איכן כל איכ

How to Use SMRT Link SMRT Analysis to Perform a Manual Analysis (Cont.)

PACBIO[®] SMRT Analysis -

B. Set Up and Launch HiFiViral Analysis Application

- After running the Demultiplex Barcodes application, create a new analysis using SMRT Analysis > Create New Analysis.
- 2
- Name the analysis
- Select Data Types > HiFi Reads.
- 4
- Select all the demultiplex samples contained in the Data Set and choose Analysis of Multiple Data Sets > One Analysis for All Data Sets.

Under Analysis of Multiple Data Sets, specify '**One Analysis for All Data Sets**'

Projects: All My Projects SMRT Analysis / Create New Analysis 1 E Copy From. Next > 1. Select Data 2. Select Analysis Analysis Name Required Analysis Type 6 HiFiViral_SARS-CoV-2_Manual_Analysis_Demo 2 AUTO ANALYSIS O ANALYSIS Data Type 🕜 Analysis of Multiple Data Sets 3 5 One Analysis for All Data Sets HiFi Reads \$ ۵ Data Sets for selected Data Type displayed in table below. Choose an option when multiples Data Sets are selected Back Members of HiFiViral DataSet 96 Demux cf Data Set Details > Sample Details Run Data \checkmark Name 🗘 🏹 Run Name 🗘 🏹 Date Created \heartsuit \heartsuit Well Sample Name Created By \heartsuit ∇ Bio Sample Name \Diamond ∇ Barcode Name \heartsuit ∇ Total Length of Read Instrument Twist 14-17-93well 2021-09-20, 04:59:... sizhang Crtl17-83 64011 \checkmark HiFiViral DataSet D ... 20210917-Twist-Cr., M13_bc1014_F--M13_.. 12.616.790 \sim HiFiViral DataSet D... Twist 14-17-93well 20210917-Twist-Cr., 2021-09-20. 04:59:... sizhang Crtl17-32 M13 bc1006 F--M13 ... 56.575.682 64011 \checkmark HiFiViral DataSet D... Twist 14-17-93well 20210917-Twist-Cr., 2021-09-20, 04:59:.. sizhang Crtl17-09 M13_bc1002_F--M13_... 43,631,875 64011 \checkmark HiFiViral DataSet D... sizhang Crtl17-95 M13 bc1016 F--M13 ... 141,207 64011 Twist 14-17-93well 20210917-Twist-Cr.. 2021-09-20, 04:59:.. \checkmark HiFiViral DataSet D... Twist 14-17-93well 20210917-Twist-Cr... 2021-09-20. 04:59:... sizhang Crtl 14-29 M13 bc1006 F--M13 ... 41.899.685 64011 $\mathbf{\sim}$ HiFiViral DataSet D... Twist 14-17-93well Crtl_14-54 M13_bc1010_F--M13_... 27,074,587 64011 2021-09-20, 04:59: sizhang \checkmark HiFiViral DataSet D... Twist 14-17-93well 20210917-Twist-Cr. 2021-09-20. 04:59:. sizhang Crtl 14-27 M13 bc1006 F--M13 ... 25.208.512 64011 \checkmark Twist 14-17-93well 20210917-Twist-Cr... 2021-09-20. 04:59:... sizhang Crtl_14-18 M13_bc1004_F--M13_... 22.770.872 64011 HiFiViral DataSet D.,

÷

ליכן כל איכן איכי 😥 PACBIO".

6

7

8

How to Use SMRT Link SMRT Analysis to Perform a Manual Analysis (Cont.)

B. Set Up and Launch HiFiViral Analysis Application (Cont.)

Select HiFiViral SARS-CoV-2 Analysis from the Analysis Application list.

Under **Associated Inputs**, SARS-CoV-2 Genome NC_045512.2 (the Wuhan reference genome) and Probe Sequences v1 are automatically loaded; advanced users may select a different reference or probe set if desired.

0
•
-

To generate the optional **Plate QC** graphical summary, click **Advanced Parameters** and load a CSV file using the provided template (assayPlateQC template 4by96.csv) as a guide.

SMRT Analysis / Create	New Analysis		
1. Select Data	2. Select Analysis		
Analysis Application	n Required		
HiFiViral SARS-Co	V-2 Analysis		÷
🔒 Import Analysis	s Settings 👤 Export	0	
Associated Inpu Reference Genome			
	Required		
Reference Genome	Required ome NC_045512.2		i
Reference Genome SARS-CoV-2 Genc Probe sequences Re	Required ome NC_045512.2		i≣

ארק כוצכן כוצ כן כוצ כן כוצ כן כוצ כן כוצ כן כוצ כן כו ארכן כו

9

How to Use SMRT Link SMRT Analysis to Perform a Manual Analysis (Cont.)

B. Set Up and Launch HiFiViral Analysis Application (Cont.)

9	
-	

Under Advanced Parameters, download the provided CSV template (assayPlateQC_template_4by96.csv) as a guide and edit the file.

Enter the **biological sample name**, **Plate ID** and **Plate Well** associated with each unique forward + reverse barcode pair listed in the first column; then save the file.

- Delete entire rows of barcodes not used
- Allowed characters*: Alphanumeric; dot; underscore; hyphen. Other characters will be automatically removed.

Browse for the Plate QC File you just edited and click on Open.

You will see 'Upload was successful' appear on the line below, assuming the file is formatted correctly.

Click Start to start the analysis.

ate QC CSV 😚	Mir	nimum Base Coverage 🕄	Minimum Varian	t Frequency 쥥	
Choose file Browse			0.5		
± Download Template					
1inimu m Barcode Score 💿	Ad	vanced Processing Options 📀	Compute Settings 🕄		
80			select		
Barcode		Bio Sample Name	assayPlateID	assayPlateWell	
M13_bc1002_FM13_	bc1050_R	HiFiViral_SARS-CoV-2_Sample_1	Α	A01	
M13_bc1002_FM13_	_bc1051_R	HiFiViral_SARS-CoV-2_Sample_2	Α	B01	
M13_bc1002_FM13_	_bc1052_R	HiFiViral_SARS-CoV-2_Sample_3	Α	C01	
M13_bc1002_FM13_	bc1053_R	HiEi//irol_SARS_Col/_2_Somple_4		D01	
M13_bc1002_FM13	bc1054_R	Plate QC CSV 🕄	A	E01	
M13_bc1002_FM13_	bc1055_R	assayPlateQC_template_4by96_HiFiVi	A A	F01	
M13_bc1002_FM13_	bc1056_R	assayriateQC_template_4by50_111111	A	G01	
M13_bc1002_FM13_	bc1057_R	보 Download Template	A	H01	
M13_bc1002_FM13_	bc1058_R		Α.	A02	
M13_bc1002_FM13_	bc1059_R	Upload was successful	A	B02	
M13_bc1002_FM13_	bc1060_R		A	C02	
M13_bc1002_FM13_	bc1061_R	HIFIVIral_SARS-CoV-2_Sample_12	A	D02	
M13_bc1002_FM13	bc1062 R	HiFiViral SARS-CoV-2 Sample 13	А	E02	

ארק כל אכן כל איכן כל איכ אינאינא 😥 расвюי

How to Use SMRT Link SMRT Analysis to Perform a Manual Analysis (Cont.)

Comparison of CSV Templates for Demultiplex Barcodes Analysis and HiFiViral SARS-CoV-2 Assay Plate QC Analysis

Demultiplex Barcodes

Barcode	Bio Sample Name
M13_bc1002_FM13_bc1050_R	HiFiViral_SARS-CoV-2_Sample_1
M13_bc1002_FM13_bc1051_R	HiFiViral_SARS-CoV-2_Sample_2
M13_bc1002_FM13_bc1052_R	HiFiViral_SARS-CoV-2_Sample_3
M13. bc100 M13. bc1052. P	Viral S-C mole 4
W13_001017_FW.+3_bc+	HIFIVITAL_SAKS-COV-2_Sample_381
M13_bc1017_FM13_bc1071_R	HiFiViral_SARS-CoV-2_Sample_382
M13_bc1017_FM13_bc1072_R	HiFiViral_SARS-CoV-2_Sample_383
M13_bc1017_FM13_bc1073_R	HiFiViral_SARS-CoV-2_Sample_384

CSV Template contains two columns

HiFiViral SARS-CoV-2 Assay Plate QC

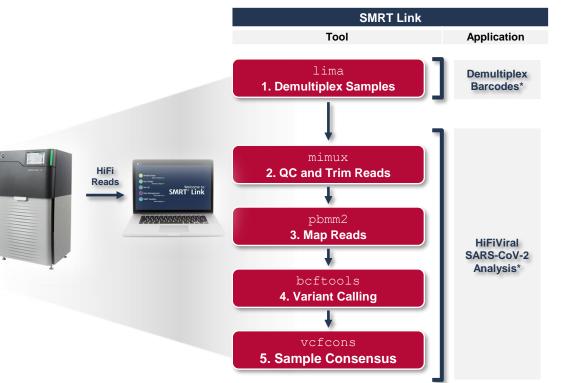
Barcode	Bio Sample Name	assayPlateID	assayPlateWell
M13_bc1002_FM13_bc1050_R	HiFiViral_SARS-CoV-2_Sample_1	Α	A01
M13_bc1002_FM13_bc1051_R	HiFiViral_SARS-CoV-2_Sample_2	Α	B01
M13_bc1002_FM13_bc1052_R	HiFiViral_SARS-CoV-2_Sample_3	Α	C01
M13-bc100 M13-bc1052.8-	Wiviviral S-C Manuale 4	And the second	
W13_00101/_FIv.+3_bc+++++++++++++++++++++++++++++++++++	HIFIVITAL_SAK5-COV-2_Sample_381	D	and the second
M13_bc1017_FM13_bc1071_R	HiFiViral_SARS-CoV-2_Sample_382	D	F12
M13_bc1017_FM13_bc1072_R	HiFiViral_SARS-CoV-2_Sample_383	D	G12
M13_bc1017_FM13_bc1073_R	HiFiViral_SARS-CoV-2_Sample_384	D	H12

CSV Template contains four columns

When editing CSV templates for Demultiplex Barcodes analysis and HiFiViral SARS-CoV-2 Assay Plate QC analysis:

- Delete entire rows of barcodes not used
- Allowed characters*: Alphanumeric; dot; underscore; hyphen. Other characters will be automatically removed.

 \rightarrow **DO NOT** include spaces – Sample Names must be unique and will be truncated after any spaces.


אמסאס לאכן כלא כין כלא

HiFiViral SARS-CoV-2 ANALYSIS WORKFLOW

SMRT Link HiFiViral SARS-CoV-2 Auto Analysis* Workflow Algorithm Descriptions

- Demultiplex barcodes using the lima tool, where the input to that application are HiFi Reads HiFi (≥Q20 CCS) Reads (BAM format).
- 2. Process the reads to trim the probe arm sequences using the mimux tool.
- 3. Align the reads to the reference genome using pbmm2.
- Call and filter variants using bcftools, generating the raw variant calls in VCF file format. Filtering in this step removes low-quality calls (less than Q20), and normalizes indels.
- 5. Filter low-frequency variants using vcfcons and generate a consensus sequence by injecting variants into the reference genome. At each position, a variant is called only if both the base coverage exceeds the minimum base coverage threshold and the fraction of reads that support this variant is above the minimum variant frequency threshold.

* The SMRT Link Demultiplex Barcodes and HiFiViral SARS-CoV-2 Analysis Applications must each be launched <u>manually</u> if Auto Analysis is <u>not</u> specified in Run Design when setting up a⁴⁹ sequencing run on Sequel II or IIe Systems with HiFiViral SARS-CoV-2 Kit library samples.

אכן כל אכן כ

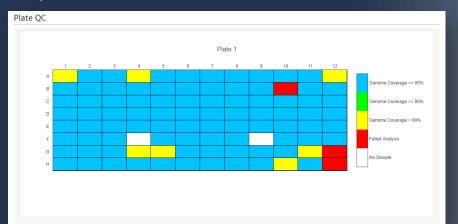
HiFiViral SARS-CoV-2 ANALYSIS OUTPUTS

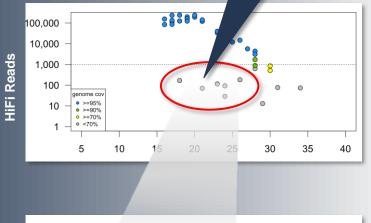

SMRT Link HiFiViral SARS-CoV-2 Analysis Application Outputs

- Per-sample analysis outputs include:
 - Consensus sequence (FASTA)
 - Variant calls (VCF)
 - □ HiFi Reads aligned to the reference (BAM)
 - Sample Summary table including: Count of variable sites, genome coverage, read coverage, and probability of multiple strains, and other metrics
 - Plot of HiFi Read coverage across the SARS-CoV-2 genome

Sample Summary

Bio Sample Name	Substitutions	Insertions	Deletions	Reads	Read Coverage	On-Target Rate	Multiple Strains (Probability)	Ns	Genome Coverage
Sample 1	36	0	3	12,964	288	99.99%	No (0.00)	156	99.47%
Sample 2	38	0	3	1,075	24	99.81%	No (0.00)	761	97.45%
Sample 3	40	0	3	2,289	51	99.91%	No (0.00)	219	99.26%


50


לאכן כלאכן כלא כין כלא כין כלא כין כלא כין כלא פין אינין א כין כלא 😥 PAC**BIO**".

Lower HiFi read counts due to evaporation-induced edge-effects during viral enrichment

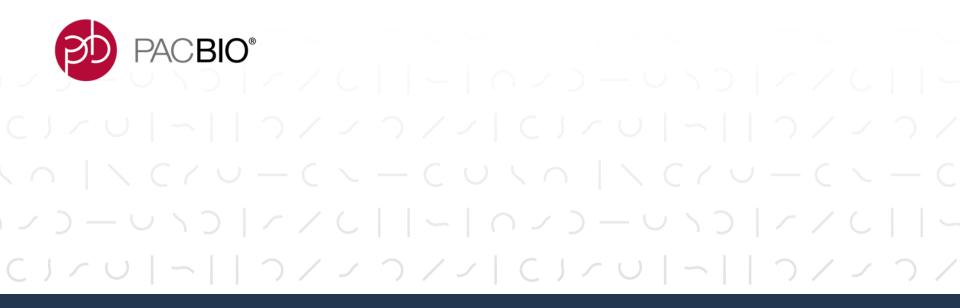
SMRT Link HiFiViral SARS-CoV-2 Analysis Application Outputs (Cont.)

 HiFiViral SARS-CoV-2 analysis application also outputs a graphical summary of performance across all samples in assay plate layout for Sample Plate QC evaluation

5

אמסא 秒 ליכן כל יכן כל יכן כל יכן כל יכן כל יכן כל יכי כ

DOWNLOADING HiFiViral SARS-CoV-2 ANALYSIS RESULTS IN SMRT LINK V10.2

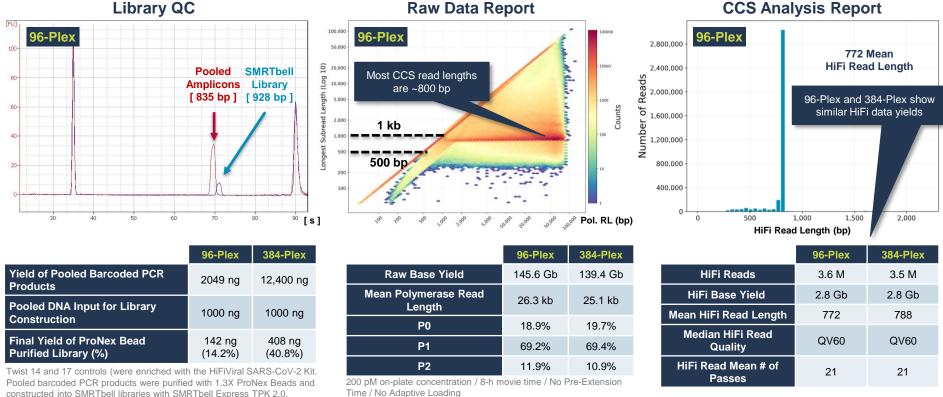

To download the HiFiViral SARS-CoV-2 analysis results, click on the File Downloads tab to download the desired output files.

Analysis Overview	File Downloads		
* Analysis Overview	Edit Output File Name Prefix Example:analysis-Twist_RNA_23_Ct29p8_rep2-45495		
Summary Report			
	File	Size	Туре
♥Data	All Samples, Probe Counts TSV	994 KB	zip
File Download	Sample Summary Table CSV	9 KB	CSV
	All Samples, Raw Variant Call VCF	244 KB	zip
SMRT Link Lo	g All Samples, Consensus Sequence Aligned BAM	791 KB	zip
	All Samples, HiFi Reads Mapped BAM	707 MB	zip
	All Samples, Variant Call VCF	206 KB	zip
	All Samples, Genome Coverage Plots	33 MB	zip
	All Samples, Consensus Sequence FASTA	701 KB	zip
	All Samples, HiFi Reads FASTQ	871 MB	zip
	Analysis Log	761 KB	log
	🗎 Analysis Log	25 KB	log

ארק כלאכן כלא כין כלא כין כלא כין כלא כין כלא כין כלא כין \mathcal{O} PACBIO*

DOWNLOADING HiFiViral SARS-CoV-2 ANALYSIS RESULTS IN SMRT LINK V10.2 (CONT.)

v 🚞 analysis-Twist_RNA_23_Ct29p8_rep2-45495-samples.consensus.fasta		Folder
Twist_RNA_13_Ct19p1_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct19p1_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct19p1_rep3.consensus.fasta		
Twist_RNA_13_Ct21p9_rep1.consensus.fasta	For each sample, HiFiViral analysis applica	ation outputs
Twist_RNA_13_Ct21p9_rep2.consensus.fasta	a single SARS-CoV-2 consensus s	
Twist_RNA_13_Ct21p9_rep3.consensus.fasta		
Twist_RNA_13_Ct22p6_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct22p6_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct22p6_rep3.consensus.fasta	30 KB	FASTA File
Marchael Twist_RNA_13_Ct24p4_rep1.consensus.fasta	30 KB	FASTA File
Marchaeler Twist_RNA_13_Ct24p4_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct24p4_rep3.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct26p2_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct26p2_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct26p2_rep3.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct28_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct28_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct28_rep3.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct29p8_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct29p8_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct29p8_rep3.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct31p5_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct31p5_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct31p5_rep3.consensus.fasta	30 KB	FASTA File
Twist_RNA_14_Ct19p1_rep1.consensus.fasta	30 KB	FASTA File



Multiplexed SARS-CoV-2 Library Example Performance Data

PACBIO*

EXAMPLE SEQUENCING PERFORMANCE FOR TWIST SYNTHETIC SARS-CoV-2 RNA CONTROLS [6 X 5 KB FRAGMENTS]

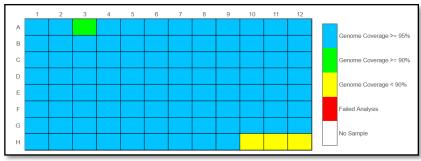
SMRTbell Library QC and Primary Sequencing Metrics for 96-Plex and 384-Plex Twist Control Samples

Time / No Adaptive Loading

רן כל אכ_ן כל אכ_ן כל אכן כל אכן כל אכן כל אכן כל אכן כל אכי כי איני א

EXAMPLE SEQUENCING PERFORMANCE FOR TWIST SYNTHETIC SARS-CoV-2 RNA CONTROLS [6 X 5 KB FRAGMENTS] (CONT.)

HiFiViral SARS-CoV-2 Auto Analysis Outputs for 96-Plex Twist Control Samples


Value	Analysis Metric
96	Samples
93	Samples With Genome Coverage > 90%
92	Samples With Genome Coverage > 95%
0	Samples Failing Workflow

Summary Report

- 93 Positive Control samples showed ≥90% genome coverage (Blue and Green wells in Plate QC image)
- 3 Negative Control samples showed <90% genome coverage as expected (Yellow wells)

Sample Summary

Bio Sample Name	Substitutions	Insertions	Deletions	Reads	Read Coverage	On- Target Rate	Multiple Strains (Probability)	Ns	Genome Coverage
Crtl17- 96	0	0	0	5	0	100.00%	No (0.00)	29,903	0.00%
Crtl17- 31	32	1	1	55,235	1,197	99.99%	No (0.00)	616	97.94%
Crtl_14- 27	31	0	4	35,341	762	100.00%	No (0.00)	682	97.72%
Crtl_14- 03	30	0	4	9,362	177	100.00%	No (0.02)	1,556	94.79%

56

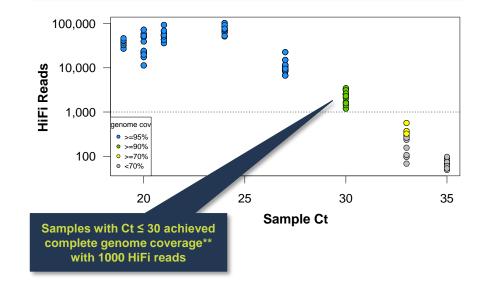
Plate QC

אמסאר ארין כל ארכין כל ארכי ארכי ארכי א

HIFIVIRAL SARS-CoV-2 KIT DELIVERS ROBUST GENOME COVERAGE PERFORMANCE ACROSS VARIABLE INPUT QUANTITIES AND MULTIPLEX LEVELS

Example SARS-CoV-2 Genome Coverage Results Obtained for Twist Control Samples

Experimental Design

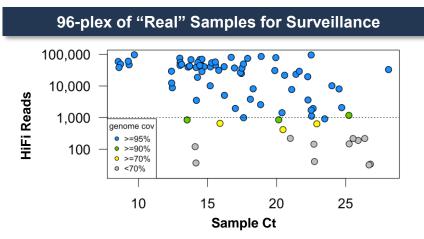

96-plex prepared with 4 Synthetic Twist RNA Controls at 8 input quantities in replicates of 3.

TWIST CONTROL	VARIANT	PART NUMBER
14	Alpha (B.1.1.7)	103907
15	Alpha (B.1.1.7)	103909
16	Beta (B.1.351)	104043
17	Gamma (P.1)	104044

RNA Input Quantity*					
SAMPLE CT	COPY NUMBER	Input Quantity Input of			
19	6 M	RNA controls ranged from 6 million copies			
20	3 M	down to 3. Copy number			
21	1 M	is converted into Ct			
24	100,000	scale after Han et al.			
27	10,000	2021.*			
30	1,000				
33	100				
35	3				

* Han M.S., et al. (2021). RT-PCR for SARS-CoV-2: quantitative versus qualitative. The Lancet Infectious Disease 21(2) p165.

96-Plex of Twist Control Samples


- 4-fold HiFi Read depth required to output a consensus base
- ~1,000 mapped HiFi reads reliably yields ≥90% genome coverage

** Complete = ≥90% genome coverage

ערק כויכן כויכן כויכן כויכן כויכן כויכן כויכן כויכי כי שמשמים מיינייכן כויכן כויכן כויכי כין כויכי כין כויכי

HIFIVIRAL SARS-CoV-2 KIT DELIVERS ROBUST GENOME COVERAGE PERFORMANCE ACROSS VARIABLE INPUT QUANTITIES AND MULTIPLEX LEVELS (CONT.)

Example SARS-CoV-2 Genome Coverage Results Obtained for Surveillance Samples

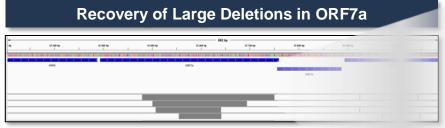
Genome Completeness in Surveillance Samples

SAMPLE INPUT	NO. OF SAMPLES	> 90% GENOME COVERAGE
Known Ct	84	83%
Unknown Ct	9	44%
Twist Controls	2	100%
Negative Control	1	0

õ 10,000 1.000 HiFi Reads \circ 8 100 genome coverage >=95% >=90% >=70% <70% 10 0 18 20 22 24 26 28 30

384-plex of Controls and Nasopharyngeal Extracts

Sample Ct


Genome Completeness in 384-plex

SAMPLE INPUT	NO. OF SAMPLES	> 90% GENOME COVERAGE	_
Controls (Ct<30)	216	90%	
NP Extracts	144	85%	58

ארכן כל אכן כל איכן כל איכן כל איכן כל איכן כל איכן כל א

HiFiViral SARS-CoV-2 KIT ENABLES COMPREHENSIVE CHARACTERIZATION OF VARIANTS FOR SURVEILLANCE AND COVID-19 RESEARCH

SARS-CoV-2 Variant Calling Achieves High Precision and Recall for Characterization of SNVs and SVs

Deletions (87 – 271 bp) are called in VCF and consensus sequence.

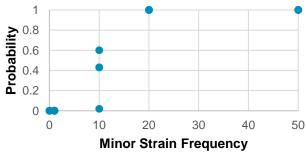
SNV Calling & Strain Assignment for Controls in a 384-plex

CONTROL SAMPLE	NEXTCLADE ASSIGNMENT	COMPLETE GENOMES	PRECISION	RECALL	NEXTSTRAIN ACCURACY
Twist 01	19A	29	1	94.8%	100%
Twist 13	20C	24	1	99.7%	100%
Twist 14	20I (Alpha, V1)	25	1	99.9%	100%
Twist 15	20I (Alpha, V1)	24	1	99.9%	100%
Twist 16	20H (Beta, V2)	24	1	100%	100%
Twist 17	20J (Gamma, V3)	24	1	100%	100%
Twist 23	21A (Delta)	24	99.1%	99.4%	100%

27,489 hp	27,989 hp	440 bp	27,790 tap	17,800 tq
ri		ONF7s		CR875
		34		
		114 134 134		
		194 bp del		
		184		
		11		
		114		
		14		
		440 bp		
27.481 to	27,989 hp	440 bp	27.780 No	27,880
2.40 te			27.700 % 	1 27.00
		27.680 tep		1
				04/7b
				04/7b
				04/7b

Example visualizations of HiFi reads spanning around large deletions.

 HiFi reads can detect SNVs and SVs with high precision and recall for accurate SARS-CoV-2 strain assignment


ארק כל אכן כ

HIFIVIRAL SARS-COV-2 KIT ENABLES DETECTION OF MINOR VARIANTS AND MULTIPLE STRAINS* IN THE SAME SAMPLE

Mixed Control Experiment

- Titrated mixed controls
- Minor frequency: 1% to 50%
- Binomial model for multi-strain detection*
- Achieve P > 95% at >20% minor frequency**

Multi-Strain Calling Performance for Mixed Controls

Surveillance samples flagged as containing multiple strains at Spike protein gene Sample 1 Sample 2 ORF1ab S (Spike Protein) ORF3a ORF1ab ORF1ab

Possible Sources of Multiple Strains in Sample

- Sample contamination, lab error, infection with multiple strains
- We recommend users confirm presence of multiple strains with additional experiments ⁶⁰
- * Multi-strain detection is supported for samples with Ct < 26
- ** Power of detection increases with more variable sites.

Detection of Minor Variants in Surveillance Samples

Technical Documentation & Applications Support Resources

ארק כל אכן כ

TECHNICAL RESOURCES FOR SARS-CoV-2 LIBRARY PREPARATION, SEQUENCING & DATA ANALYSIS

Visit PacBio's <u>COVID-19 Sequencing Tools and Resources Website</u> for HiFiViral SARS-CoV-2 Workflow Updates and Other Resources

Sample Preparation Literature

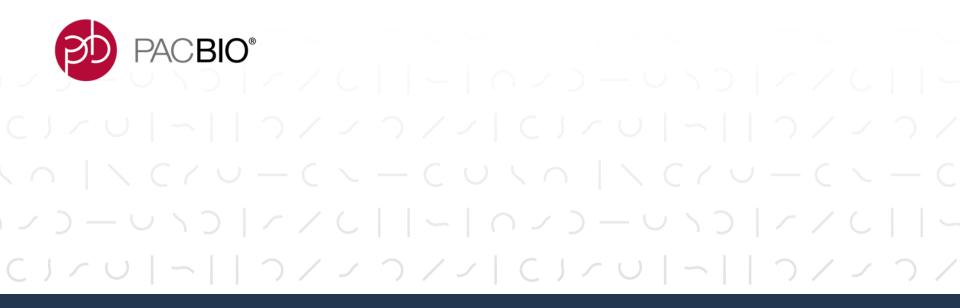
- Procedure & Checklist PacBio HiFiViral High-Throughput Multiplexing for Full-Viral Genome Sequencing of SARS-CoV-2 (<u>102-188-800</u>)
- Quick Reference Card Loading and Pre-extension Recommendations for the Sequel II/IIe Systems (<u>101-769-100</u>)
- Overview Sequel Systems Application Options and Sequencing Recommendations (<u>101-851-300</u>)
- Application Brief: HiFiViral Full-Viral Genome Sequencing Best practices (BP110-111121)
- Application Note: HiFiViral Full-Viral Genome Sequencing (102-194-700) [Coming Soon]
- Technical Overview: Multiplexed Library Preparation for Full-Viral Genome Sequencing Using HiFiViral SARS-CoV-2 Kit (102-205-300)

FAQ

- HiFiViral SARS-CoV-2 Kit FAQ [Link]

Posters, Videos & Webinars

- PacBio HiFiViral SARS-CoV-2 Kit Product Overview Video (2021) [Link]
- SFAF Poster (2021): HiFiViral SARS-CoV-2: A kitted solution for genome surveillance that is robust across sample input quantities and new variants [Link]
- ASHG Webinar (2021): HiFiViral SARS-CoV-2 Kit: A differentiate solution for surveillance by sequencing [Link]

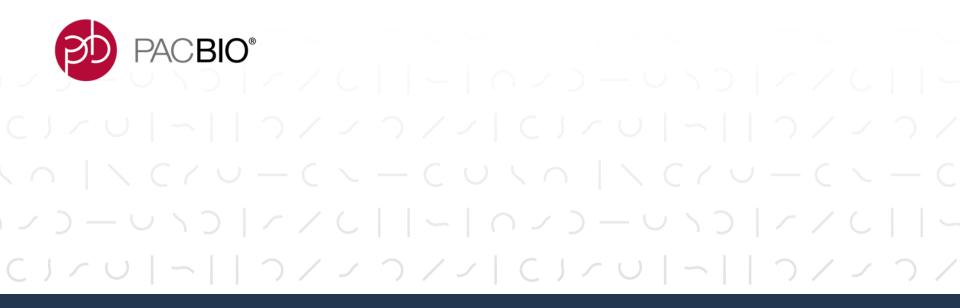

PacBio HiFiViral SARS-CoV-2 Kit Product Overview Video (2021) [Link]

איכן כל אכן כל איכן כל איכן איכן איכן איכ

TECHNICAL RESOURCES FOR SARS-CoV-2 LIBRARY PREPARATION, SEQUENCING & DATA ANALYSIS (CONT.)

Ordering Information

CONSUMABLE PRODUCT	PART NUMBER
HiFiViral SARS-CoV-2 Kit (384 rxn)	102-132-000
SMRTbell Express Template Prep Kit 2.0 (18 rxn)	100-938-900
SMRT Cell 8M Tray	101-389-001
Sequel II Binding Kit 2.1 and Internal Control 1.0 (24 rxn)	101-843-000
Sequel II Sequencing Kit 2.0 (4 rxn)	101-820-200
SMRTbell Enzyme Cleanup Kit 2.0 (10 rxn)	101-932-600



APPENDIX 1: RNA Isolation Kit Options for Full-Viral Genome Sequencing of SARS-CoV-2

RNA SAMPLE EXTRACTION KIT OPTIONS FOR FULL-VIRAL GENOME SEQUENCING OF SARS-CoV-2

Note: The products below have <u>not</u> been tested or validated by PacBio but are listed here as examples of third-party kits used by other PacBio customers for isolating SARS-CoV-2 RNA samples for multiplexed SMRTbell library preparation

VENDOR	RNA ISOLATION KIT PRODUCT	AUTOMATION PLATFORM
Thermo Fisher Scientific	MagMAX Viral and Pathogen Nucleic Acid Isolation Kit [Link]	KingFisher Flex System
Roche Molecular Systems	MagNA Pure 96 DNA and Viral NA Small Volume Kit [<u>Link</u>]	Roche MagNA Pure-96 (MP6)

APPENDIX 2: Guidance on Workflow Automation For Multiplexed Library SARS-CoV-2 Library Preparation ליכן כל יכן כל יכן כל יכן כל יכן כל יכן לא כן לא כן כל יכן א כן לא א כן לא כן לא כן כל יכן כל יכי א סיי כי א 🚯 РАСВЮ"

WORKFLOW AUTOMATION OPTIONS FOR HIGH-THROUGHPUT MULTIPLEXED HiFiViral SARS-CoV-2 SAMPLE PREPARATION

Interested in automating your HiFiViral SARS-CoV-2 sample preparation workflow to achieve higher throughput? Please <u>contact</u> PacBio Support or your local Field Applications Scientist to discuss your needs.

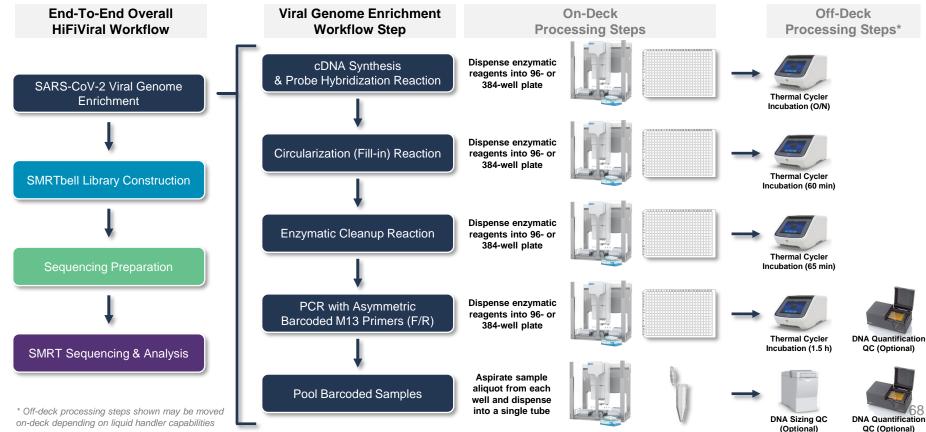
Agilent Bravo Liquid Handler

Sciclone G3 NGSx Workstation

Biomek 4000 Workstation

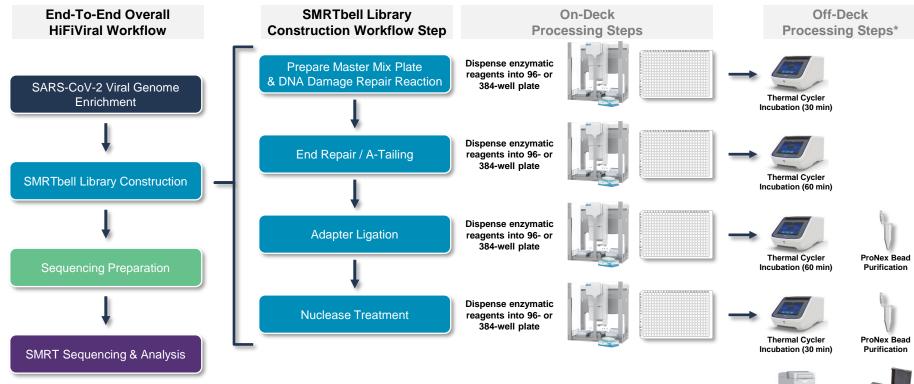
Hamilton Microlab VANTAGE Liquid Handler

Tecan Infinite F-Series Plate Reader


Custom Liquid Handler

Key Considerations for Workflow Automation

- Liquid handler capabilities, including:
 - Small volume ($\geq 2 \mu L$) and large volume ($\geq 200 \mu L$) transfers
 - Magnetic plate blocks for bead-based purification and buffer exchanges
 - Integrated heating / cooling temperature control
- Microplate reader for high-throughput DNA concentration QC


אר 🔂 לאכן כלאכן כלא כין כלא כין כלא כין כלא כין כלא כין כלא כין כלא ארכין כלא ארכין כלא ארכין כלא ארכין כלא ארכי

RECOMMENDED STEPS TO AUTOMATE FOR VIRAL GENOME ENRICHMENT WORKFLOW USING HiFiViral SARS-CoV-2 KIT

ארכן כל אכן כל ארכין כל ארכי

RECOMMENDED STEPS TO AUTOMATE FOR HIFIVIral SARS-CoV-2 SMRTBELL LIBRARY CONSTRUCTION WORKFLOW

* Off-deck processing steps shown may be moved on-deck depending on liquid handler capabilities

DNA Sizing QC

DNA Quantification

www.pacb.com

For Research Use Only. Not for use in diagnostic procedures. © Copyright 2021 by Pacific Biosciences of California, Inc. All rights reserved. Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, SMRTbell, Iso-Seq, and Sequel are trademarks of Pacific Biosciences. Pacific Biosciences does not sell a kit for carrying out the overall No-Amp Targeted Sequencing method. Use of these No-Amp methods may require rights to third-party owned intellectual property. FEMTO Pulse and Fragment Analyzer are trademarks of Agilent Technologies Inc.

All other trademarks are the sole property of their respective owners.